Skip to main content
Log in

Preparation and optimization of MTO/Ag/MTO transparent flexible film based on co-sputtering at room temperature

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The transparent flexible SnO2:Mo/Ag/SnO2:Mo (MTO/Ag/MTO) triple-layer film was prepared based on co-sputtering at room temperature for the first time. The optimization of the MTO layer thickness on the optical and electrical properties of the triple-layer films was investigated and the bending stability was verified by bending test. It was found that the visible light transmittance of the triple-layer film increases first and then decreases with the increase of MTO layer thickness, which indicates that the MTO layer thickness plays an important role in optimizing the visible light transmittance of the triple-layer film. Also, as the thickness of the MTO layer increases, the triple-layer film carrier concentration decreases and the sheet resistance increases. Therefore, the triple-layer film with excellent properties was obtained via the optimization of the MTO layer thickness to 40 nm, which has a maximum figure of merit of 2.0 × 10–2 Ω−1, a high visible light transparency of 82% and a low sheet resistance of 6.9 Ω/sq. Meanwhile, the prepared triple-layer film also has excellent mechanical flexibility (curvature radius R ≥ 4 mm, and the number of bending times is 10,000).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data underlying the results presented in this paper are not publicly available at this time but maybe obtained from the authors upon reasonable request.

References

  1. A. Baltakesmez, B. Güzeldir, Appl. Phys. A 129, 2 (2023)

    Article  Google Scholar 

  2. W. Yang, H. Yang, J. Su, X. Zhang, Vaccum 205, 111419 (2022)

    Article  ADS  Google Scholar 

  3. A. Kumar, S.Y. Lee, Microelectron. Eng. 261, 111794 (2022)

    Article  Google Scholar 

  4. W. Pan, X. Zhou, Y. Li, W. Dong, L. Lu, S. Zhang, Mater. Sci. Semicond. Process. 151, 106998 (2022)

    Article  Google Scholar 

  5. C.X. Huang, J. Li, Y.Z. Fu, J.H. Zhang, X.Y. Jiang, Z.L. Zhang, Q.H. Yang, J. Alloys Compd. 681, 81–87 (2016)

    Article  Google Scholar 

  6. A. Panca, J. Panidi, H. Faber, S. Stathopoulos, T.D. Anthopoulos, T. Prodromakis, Adv. Funct. Mater. 33, 20 (2023)

    Article  Google Scholar 

  7. X. Yin, D. Lin, W. Zhong, Y. Chen, G. Li, Y. Li, R. Chen, Solid State Electron. 208, 108726 (2023)

    Article  Google Scholar 

  8. M.E. Rivas-Aguilar, N. Hernandez-Como, G. Gutierrez-Heredia, A. Sánchez-Martínez, M.M. Ramirez, I. Mejia, M.A. Quevedo-López, Curr. Appl. Phys. 18, 7 (2018)

    Article  Google Scholar 

  9. E.R. Ollotu, J.S. Nyarige, N.R. Mlyuka, M.E. Samiji, M. Diale, J. Mater. Sci. Mater. Electron. 31, 19 (2020)

    Article  Google Scholar 

  10. S. Song, T. Yang, J. Liu, Y. Xin, Y. Li, S. Han, Appl. Surf. Sci. 257, 16 (2011)

    Google Scholar 

  11. A.H. Ali, Z. Hassan, A. Shuhaimi, Appl. Surf. Sci. 443, 544–547 (2018)

    Article  ADS  Google Scholar 

  12. H. Khachatryan, D.J. Kim, M. Kim, H.K. Kim, Mater. Sci. Semicond. Process. 88, 51–56 (2018)

    Article  Google Scholar 

  13. J.H. Park, C. Buurma, S. Sivananthan, R. Kodama, W. Gao, T.A. Gessert, Appl. Surf. Sci. 307, 388–392 (2014)

    Article  Google Scholar 

  14. S. Seong, Y.C. Jung, T. Lee, I.S. Park, J. Ahn, Mater. Sci. Semicond. Process. 79, 14–19 (2018)

    Article  Google Scholar 

  15. N. Meshram, C. Loka, K.R. Park, K.S. Lee, Mater. Lett. 145, 120–124 (2015)

    Article  Google Scholar 

  16. S.J. Oh, S. Lee, K.C. Choi, J.H. Kwon, T.S. Kim, J. Mater. Chem. C 11, 22 (2023)

    Google Scholar 

  17. K. Sivaramakrishnan, N.D. Theodore, J.F. Moulder, T.L. Alford, J. Appl. Phys. 106, 6 (2009)

    Google Scholar 

  18. H. Salmaniannezhad, H. Salmaniannezhad, R. Zarei-Moghadam, M. Khani, M. Ardani, B. Shokri, Progress Phys. Appl. Mater. 3, 2 (2023)

    Google Scholar 

  19. H. Wang, C. Tang, Q. Shi, M. Wei, Y. Su, S. Lin, M. Dai, Ceram. Int. 47, 6 (2021)

    Google Scholar 

  20. H. Ghasemi, M.H. Mozaffari, R. Moradian, N. Ghobadi, Mater. Sci. Semicond. Process. 149, 106853 (2022)

    Article  Google Scholar 

  21. S.H. Park, S.J. Lee, J.H. Lee, J. Kal, J. Hahn, H.K. Kim, Org. Electron. 30, 112–121 (2016)

    Article  Google Scholar 

  22. M. Rabizadeh, M.H. Ehsani, M.M. Shahidi, Sci. Rep. 12, 1 (2022)

    Article  Google Scholar 

  23. S.Y. Park, S.Y. Lee, Carbon Lett. 33, 4 (2023)

    Article  Google Scholar 

  24. M. Rabizadeh, M.H. Ehsani, Ceram. Int. 48, 11 (2022)

    Article  Google Scholar 

  25. Y.C. Kim, S.J. Lee, I.K. Oh, S. Seo, H. Kim, J.M. Myoung, J. Alloys Compd. 688, 1108–1114 (2016)

    Article  Google Scholar 

  26. M. Wu, H. Zheng, X. Li, S. Yu, Ceram. Int. 46, 4 (2020)

    Google Scholar 

  27. L. Song, C. Wu, S. Yu, X. Wang, Mater. Lett. 312, 131683 (2022)

    Article  Google Scholar 

  28. S. Yu, W. Zhang, L. Li, D. Xu, H. Dong, Y. Jin, Thin Solid Films 552, 218–224 (2014)

    Article  ADS  Google Scholar 

  29. M. Batzill, U. Diebold, Prog. Surf. Sci. 79, 2 (2005)

    Article  Google Scholar 

  30. D.R. Sahu, J.L. Huang, Thin Solid Films 516, 2 (2007)

    Article  Google Scholar 

  31. E.C. Nwanna, P.E. Imoisili, T.C. Jen, J. Mater. Res. Technol. 17, 102123 (2022)

    Article  Google Scholar 

  32. T. Ma, M. Nikiel, A.G. Thomas, M. Missous, D.J. Lewis, J. Mater. Sci. 56, 28 (2021)

    Google Scholar 

  33. J. Szczyrbowski, A. Dietrich, K. Hartig, Sol Energy Mater. 16, 1 (1987)

    Article  Google Scholar 

  34. D.O. Scanlon, G.W. Watson, D.J. Payne, G.R. Atkinson, R.G. Egdell, D.S.L. Law, J. Phys. Chem. C 114, 10 (2010)

    Article  Google Scholar 

  35. P. Grosse, R. Hertling, T. Müggenburg, J. Non-Cryst. Solids 218 (1997).

  36. R. Pandey, B. Angadi, S.K. Kim, J.W. Choi, D.K. Hwang, W.K. Choi, Opt. Mater. Express 4, 10 (2014)

    Article  Google Scholar 

  37. Z.S. Yuan, C.C. Wu, W.C. Tzou, C.F. Yang, Y.H. Chen, Vacuum 165, 305–310 (2019)

    Article  ADS  Google Scholar 

  38. G. Haacke, New figure of merit for transparent conductors. J. Appl. Phys. 47, 9 (1976)

    Article  Google Scholar 

  39. S.W. Cho, J.A. Jeong, J.H. Bae, J.M. Moon, K.H. Choi, S.W. Jeong, N.J. Park, J.J. Kim, S.H. Lee, J.W. Kang, M.S. Yi, H.K. Kim, Thin Solid Films 516, 21 (2008)

    Google Scholar 

  40. T.H. Kim, B.H. Choi, J.S. Park, S.M. Lee, Y.S. Lee, L.S. Park, Mol. Cryst. Liq. Cryst. 520, 1 (2010)

    ADS  Google Scholar 

  41. V. Sharma, P. Kumar, A. Kumar, Surbhi, K. Asokan, K. Sachdev, Sol Energy Mat. Sol C 169, 122–131 (2017)

    Article  Google Scholar 

  42. Y. Zhang, L. Wang, Z. Geng, D. Zhang, D. Wang, J. Liu, Q. Wang, Mater. Sci. Semicond. Process. 165, 107643 (2023)

    Article  Google Scholar 

  43. Y. Sugimoto, K. Igarashi, S. Shirasaki, A. Kikuchi, Jpn. J. Appl. Phys. 55, 4S (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (No.62064001), by GuiZhou Provincial Basic Research Program (Natural Science) (No. ZK[2021]238), by Science and Technology Personnel Planning Project of GuiZhou Province (YQK[2023]018), and by Science and Technology Planning Foundation of GuiYang City (No. [2021]43-2).

Author information

Authors and Affiliations

Authors

Contributions

Min Su: Investigation, Writing-Original Draft. Suheng Shi: Investigation. Jiarong Chen: Investigation. Dasen Ren: Methodology. Lan Yue: Conceptualization, Resources, Writing-Review & Editing, Funding acquisition, Project administration. Fanxin Meng: Conceptualization, Funding acquisition, Methodology.

Corresponding authors

Correspondence to Lan Yue or Fanxin Meng.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, M., Shi, S., Chen, J. et al. Preparation and optimization of MTO/Ag/MTO transparent flexible film based on co-sputtering at room temperature. Appl. Phys. A 130, 406 (2024). https://doi.org/10.1007/s00339-024-07557-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-024-07557-w

Keywords

Navigation