Skip to main content
Log in

Effect of samarium substitution on dielectric and electrical properties of Sr1-xBaxBi2Ta2O9 (x = 0, 0.05) lead-free ceramics

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Citric acid solution and solid state are paired to prepare Sm-doped Sr1 − xBaxBi2Ta2O9 (x = 0, 0.05) ceramics in a way that byproducts are not released. XRD technique demonstrated that the compounds maintained orthorhombic structure, whereas lattice parameters analysis showed that dopants induce distortion of the orthorhombic unit cell. SEM revealed that plate-shaped dense ceramics can be fabricated. The electrical study sheds light on the influence of motif on carrier transport in Sr1 − xBaxBi2Ta2O9 (x = 0, 0.05) ceramics. A partial Sm/Ba occupational disorder in lattice structure induces a diffuse phase transition. Compared to pure samples, the effect of samarium on dielectric properties was markedly revealed, reducing dielectric loss and enhancing the dielectric constant at room temperature. The electoral study carried out at higher temperatures, suggests that the mobility of the charge carrier is mainly due to a hopping mechanism according to the correlated barrier hopping (CBH) model fitted to hopping conduction. Through the electrical modulus model, the mobility of the charge carriers in the system is involved in a long-short-range hopping approach. Sm-dopant content leads to an upshift in the barrier energy of the AC, DC, and CBH conductivity models. Thus, when Sm atoms go up to 1.37 at% (x = 0.1) may hamper the free movement of charge carriers, leading to lower tanδ values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this article. Requests for material should be made to the corresponding author (Mohamed AFQIR).

References

  1. N.A. Benedek, J.M. Rondinelli, H. Djani, P. Ghosez, P. Lightfoot, Dalt Trans. 44, 10543 (2015)

    Article  Google Scholar 

  2. R. Whatmore, Springer Handb. Electron. Photonic Mater. (2023)

  3. J.S. Yang, X.M. Chen, Mater. Lett. 29, 73 (1996)

    Article  Google Scholar 

  4. C.H. Lu, Y.C. Chen, J. Eur. Ceram. Soc. 19, 2909 (1999)

    Article  Google Scholar 

  5. V. Senthil, S. Panigrahi, Int. J. Hydrogen Energy. 44, 18058 (2019)

    Article  Google Scholar 

  6. Y. Wu, M.J. Forbess, S. Seraji, S.J. Limmer, T.P. Chou, G. Cao, J. Appl. Phys. 89, 5647 (2001)

    Article  ADS  Google Scholar 

  7. P. Banerjee, A. Franco, Mater. Chem. Phys. 225, 213 (2019)

    Article  Google Scholar 

  8. C.C. Wu, C.F. Yang, Sci. Rep. 10, 1 (2020)

    Article  Google Scholar 

  9. Y. Zhong, B. Deng, X. Gao, P. Sun, Y. Ren, T. Liang, R. Yu, J. Lumin. 215, 116648 (2019)

    Article  Google Scholar 

  10. M. Afqir, M. Elaatmani, A. Zegzouti, N. Tahiri, M. Daoud, Appl. Phys. A 129, (2023)

  11. Y. Zhong, P. Sun, X. Gao, Q. Liu, S. Huang, B. Liu, B. Deng, R. Yu, J. Lumin. 212, 45 (2019)

    Article  Google Scholar 

  12. Y. Noguchi, H. Shimizu, M. Miyayama, K. Oikawa, T. Kamiyama, J. Japanese, Appl. Physics, part 1 Regul. Pap Short. Notes Rev. Pap. 40, 5812 (2001)

    Article  Google Scholar 

  13. M. Megdiche, C. Perrin-Pellegrino, M. Gargouri, J. Alloys Compd. 584, 209 (2014)

    Article  Google Scholar 

  14. M.H. Dhaou, A. Mallah, A. Alsawi, Cryst. Res. Technol. 56, 1 (2021)

    Article  Google Scholar 

  15. A. Khokhar, P.K. Goyal, O.P. Thakur, K. Sreenivas, Ceram. Int. 41, 4189 (2015)

    Article  Google Scholar 

  16. V. Senthil, T. Badapanda, A. Chandra Bose, S. Panigrahi, J. Mater. Sci. Mater. Electron. 27, 4760 (2016)

    Article  Google Scholar 

  17. F. Rehman, L. Wang, H.-B. Jin, A. Bukhtiar, R. Zhang, Y. Zhao, J.-B. Li, (n.d.).

  18. M. Afqir, A. Tachafine, D. Fasquelle, M. Elaatmani, J.C. Carru, A. Zegzouti, J. Ceram. Sci. Technol. 9, 209 (2018)

    Google Scholar 

  19. M. Afqir, A. Tachafine, D. Fasquelle, M. Elaatmani, J.-C. Carru, A. Zegzouti, M. Daoud, (n.d.).

  20. M. Afqir, A. Tachafine, D. Fasquelle, M. Elaatmani, J.C. Carru, A. Zegzouti, M. Daoud, Solid State Sci. 73, 51 (2017)

    Article  ADS  Google Scholar 

  21. R.D. Shannon, J. Appl. Phys. 73, 348 (1993)

    Article  ADS  Google Scholar 

  22. T.P. Wendari, M. Ikhram, Y.E. Putri, U. Septiani, Ceram. Int. 48, 10328 (2022)

    Article  Google Scholar 

  23. D. Dhak, P. Dhak, T. Ghorai, P. Pramanik, J. Appl. Phys. 102, 0 (2007)

    Article  Google Scholar 

  24. I. Rahaman, D. Behera, A. Haque, J. Alloys Compd. 955, 170271 (2023)

    Article  Google Scholar 

  25. A. Rached, M.A. Wederni, A. Belkahla, J. Dhahri, K. Khirouni, S. Alaya, R.J. Martín-, Phys. B Condens. Matter 596, 412343 Contents (2020)

  26. X. Zheng, S. Wang, J. Wang, W. Hua, J. Zhang, L. Liu, J. Phys. Chem. C 124, 25254–25261 (2020)

    Article  Google Scholar 

  27. Z. Peng, Q. Chen, D. Liu, Y. Wang, D. Xiao, J. Zhu, Curr. Appl. Phys. 13, 1183 (2013)

    Article  ADS  Google Scholar 

  28. J.D. Bobić, M.M. Vijatović Petrović, J. Banys, B.D. Stojanović, Ceram. Int. 39, 8049 (2013)

    Article  Google Scholar 

Download references

Funding

No funding was received.

Author information

Authors and Affiliations

Authors

Contributions

All authors approved the final manuscript.

Corresponding author

Correspondence to Mohamed Afqir.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Conflict of interest

Neither competing interests nor conflict interests are declared by the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afqir, M., Fasquelle, D., Tachafine, A. et al. Effect of samarium substitution on dielectric and electrical properties of Sr1-xBaxBi2Ta2O9 (x = 0, 0.05) lead-free ceramics. Appl. Phys. A 130, 405 (2024). https://doi.org/10.1007/s00339-024-07554-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-024-07554-z

Keywords

Navigation