Skip to main content
Log in

Wide-band vibration isolation induced by merging acoustic black holes and destructive interference

  • S.I. : Intelligent development of metamaterials: theoretical and experimental aspects
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Phononic crystals embedded with acoustic black hole (ABH) structure have excellent performance absorbing structural waves in elastic bodies. However, it is not easy to be applied in practice because of the narrow sound absorption band. In this paper, we propose a new type of phononic crystal that embeds the acoustic black hole structure and destructive interference structure. The simulated and measured elastic wave transmission indicate that the vibration in the structure is reduced by 40 dB in the broad range of 100–50,000 Hz, which may provide a new path for wide-frequency vibration isolation and noise control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data sets analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. T. Yang, S. Hou, Z.-H. Qin, Q. Ding, L.-Q. Chen, J. Sound Vib. 494, 115629 (2021)

    Article  Google Scholar 

  2. T. Yang, Z. Lin, T. Yang, Adv. Eng. Mater. 2022, 2200805 (2022). https://doi.org/10.1002/adem.202200805

    Article  Google Scholar 

  3. M.A. Mironov, V.V. Pislyakov, Acoust. Phys. 48(3), 347 (2002)

    Article  ADS  Google Scholar 

  4. H. Ji, J. Luo, J. Qiu, L. Cheng, Mech. Syst. Signal Process. 104, 19 (2018)

    Article  ADS  Google Scholar 

  5. V.V. Krylov, F. Tilman, J. Sound Vib. 274(3–5), 605 (2004)

    Article  ADS  Google Scholar 

  6. H. Ji, X. Zhao, N. Wang, W. Huang, J. Qiu, L. Cheng, J. Vib. Acoust.-Trans. Asme. (2022). https://doi.org/10.1115/1.4053475

    Article  Google Scholar 

  7. H. Ji, N. Wang, C. Zhang, X. Wang, L. Cheng, J. Qiu, J. Sound Vib. 500, 116024 (2021)

    Article  Google Scholar 

  8. J. Deng, O. Guasch, L. Zheng, J. Sound Vib. 458, 109 (2019)

    Article  ADS  Google Scholar 

  9. L. Tang, L. Cheng, J. Appl. Phys. (2017). https://doi.org/10.1063/1.4983459

    Article  Google Scholar 

  10. L. Tang, L. Cheng, Mech. Syst. Signal Process. 133, 106257 (2019)

    Article  Google Scholar 

  11. X. Lyu, Q. Ding, T. Yang, Appl. Math. Mech.-Engl. Ed. 41(2), 279 (2020)

    Article  Google Scholar 

  12. S. Kottayi, R. Althomali, T.M. Thasleema, N.K. Narayanan and Ieee: IEEE Int. Conf. Commun. Signal Process. (ICCSP), 2016, p. 73.

  13. A. Arjunan, Mater. Today Commun. 19, 68 (2019)

    Article  Google Scholar 

  14. J. Xu, X. Zhang, R. Yan, J. Appl. Mech. 87(9), 091001 (2020). https://doi.org/10.1115/1.4047205

    Article  ADS  Google Scholar 

  15. W. Liu, B. Yi, G.H. Yoon, H. Choi, Adv. Eng. Mater. (2020). https://doi.org/10.1002/adem.202000645

    Article  Google Scholar 

  16. J.Q. Sun, J. Sound Vib. 185(5), 827 (1995)

    Article  ADS  Google Scholar 

  17. V.V. Krylov, J. Sound Vib. 468, 115100 (2020)

    Article  Google Scholar 

  18. X. Lyu, H. Li, Z. Ma, Q. Ding, T. Yang, L. Chen, K.K. Zur, J. Sound Vib. 514, 116432 (2021)

    Article  Google Scholar 

  19. J. Zhang, X. Zhang, H. Zhang, X. Bi, N. Hu, C. Zhang, J. Sound Vib. 530, 116945 (2022)

    Article  Google Scholar 

  20. H. Meng, D. Chronopoulos, A.T. Fabro, W. Elmadih, I. Maskery, J. Sound Vib. 465, 115005 (2020)

    Article  Google Scholar 

  21. S. Wang, S.-Y. Lin, Acta Phys. Sin. 68(2), 024303 (2019)

    Article  Google Scholar 

  22. W. Wei, D. Chronopoulos, H. Meng, Materials. 14(17), 4759 (2021)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China [Grant Number 12072221], the Fundamental Research Funds for the Central Universities [Grant Number 2013017] and the Ten Thousand Talents Program.

Funding

This research was supported by National Natural Science Foundation of China (Grant Nos. 12232014, 12072221).

Author information

Authors and Affiliations

Authors

Contributions

Pengfei Fu: conceptualization, methodology, software, data curation, writing—original draft. Xiaofei lyu: validation, investigation. Tianzhi Yang: conceptualization, funding acquisition, writing—review and editing. Li-Qun Chen: writing—review and editing.

Corresponding authors

Correspondence to Tianzhi Yang or Li-Qun Chen.

Ethics declarations

Conflict of interest

We have no competing interests. All authors gave final approval for publication and agree to be accountable for all aspects of the work presented herein.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, P., lyu, X., Yang, T. et al. Wide-band vibration isolation induced by merging acoustic black holes and destructive interference. Appl. Phys. A 130, 416 (2024). https://doi.org/10.1007/s00339-024-07540-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-024-07540-5

Keywords

Navigation