Skip to main content
Log in

Structural, electrical and magnetic studies on CoFe2O4 nanoparticles with polyvinylpyrrolidone (PVP) via sol–gel approach

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A cobalt ferrite (CoFe2O4) nanoparticle is harvested through sol–gel method. The various percentage of PVP (2.5, 5.0, 7.5, 10.0 and 12.5%) was added to the initial solutions and is acted as a chelating agent. Through X-Ray diffraction examinations results confirmed the single phase CoFe2O4 and had bigger crystallite size. The functional analysis is found through Fourier transform infrared spectroscopy (FTIR) studies. The optical analysis carried out through UV–visible spectrometer and a direct bandgap were determined. The surface features and its content of elements in the samples were found through scanning electron microscope (SEM) with energy dispersive (EDAX) analysis. The detailed magnetic characteristics of the resulting sample were found through vibrating sample magnetometer (VSM). Through TG/DTA measurements the decompositions and anionic oxidation—reduction were analysed. The dielectric constant and related parameters with respect to applied frequency are discussed through LCR measurement. The electrochemical behavior of the samples was tested through cyclic voltameter setup. And finally concluded with the merits and demerits.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4
Fig. 5.
Fig. 6
Fig. 7
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

Data availability

The data can be made available, the request from the editor.

References

  1. T. Hayashi, S. Hirono, M. Tomita, S. Umemura, Magnetic thin films of cobalt nanocrystals encapsulated in graphite-like carbon. Nature 381(6585), 772–774 (1996)

    Article  ADS  Google Scholar 

  2. J.H. Lee, Y.M. Huh, Y.W. Jun, J.W. Seo, J.T. Jang, H.T. Song, J. Cheon, Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat. Med. 13(1), 95–99 (2007)

    Article  Google Scholar 

  3. T. Du, H. Song, O.J. Ilegbusi, Sol–gel derived ZnO/PVP nanocomposite thin film for superoxide radical sensor. Mater. Sci. Eng. C 27(3), 414–420 (2007)

    Article  Google Scholar 

  4. A.T. Apostolov, I.N. Apostolova, J.M. Wesselinowa, MO.Fe2O3 nanoparticles for self-controlled magnetic hyperthermia. J. Appl. Phys. 109, 8 (2011)

    Article  Google Scholar 

  5. A. Brigger, C. Dubernet, P. Couvreur, Nanoparticles in cancer therapy and diagnosis. Adv. Drug Deliv. Rev. 64, 24–36 (2012)

    Article  Google Scholar 

  6. B. Rana, M. Agrawal, S. Pal, A. Barman, Magnetization reversal dynamics in clusters of single domain Ni nanoparticles. J. Appl. Phys. 107, 9 (2010)

    Article  Google Scholar 

  7. G.R. Patta, V. Ravi Kumar, B.V. Ragavaiah, N. Veeraiah, A critical study on the magnetic properties of ultrafine cobalt ferrite nanoparticles synthesized by polyethylene glycol assisted sol–gel method. Appl. Phys. A 126, 64 (2020)

    Article  ADS  Google Scholar 

  8. M. Hashim, N. Boda, A. Ahmed, S.K. Sharma, D. Ravinder, E. Sumalatha, A. Ul-Hamid, M.M. Ismail, M. Chaman, S.E. Shirsath, S. Ravi Kumar, S.S. Kumar, M.N. Meena, Influence of samarium doping on structural, elastic, magnetic, dielectric, and electrical properties of nanocrystalline cobalt ferrite. Appl. Phys. A 127, 526 (2021)

    Article  ADS  Google Scholar 

  9. E. Karaoğlu, U. Özel, C. Caner, A. Baykal, M.M. Summak, H. Sözeri, Synthesis and characterization of NiFe2O4–Pd magnetically recyclable catalyst for hydrogenation reaction. Mater. Res. Bull. 47(12), 4316–4321 (2012)

    Article  Google Scholar 

  10. S.A. Khorrami, G. Mahmoudzadeh, S.S. Madani, F. Gharib, Effect of calcination temperature on the particle sizes of zinc ferrite prepared by a combination of sol–gel auto combustion and ultrasonic irradiation techniques. J. Ceram. Process. Res. 12(5), 504–508 (2011)

    Google Scholar 

  11. P. Liu, Z. Yao, J. Zhou, Z. Yang, L.B. Kong, Small magnetic Co-doped NiZn ferrite/graphene nanocomposites and their dual-region microwave absorption performance. J. Mater. Chem. C (2016). https://doi.org/10.1039/C6TC03518C

    Article  Google Scholar 

  12. P. Liu, H.N. Vincent Ming, Y. Zhengjun, Z. Jintang, L. Yiming, Y. Zhihong, L. Hualiang, B.K. Ling, ACS Appl. Mater. Interfaces 9(19), 16404–16416 (2017)

    Article  Google Scholar 

  13. P. Liu, P. Jianping, C. Yutong, L. Mei, T. Wen, G. Zi-Hao, Y. Kan, Giant 8, 100076 (2021)

    Article  Google Scholar 

  14. A. Baykal, N. Bıtrak, B. Ünal, H. Kavas, Z. Durmus, Ş Özden, M.S. Toprak, Polyol synthesis of (polyvinylpyrrolidone) PVP–Mn3O4 nanocomposite. J. Alloys Comp. 502(1), 199–205 (2010)

    Article  Google Scholar 

  15. O.J. Ilegbusi, H. Song, R. Chakrabarti, Biocompatibility and conductometric property of sol–gel derived ZnO/PVP nanocomposite biosensor film. J. Bionic Eng. 7, S30–S35 (2010)

    Article  Google Scholar 

  16. G. Wang, Y. Ma, X. Dong, Y. Tong, L. Zhang, J. Mu, X. Zhang, Facile synthesis and magnetorheological properties of superparamagnetic CoFe2O4/GO nanocomposites. Appl. Surf. Sci. 357, 2131–2135 (2015)

    Article  ADS  Google Scholar 

  17. A. Amirabadizadeh, Z. Salighe, R. Sarhaddi, Z. Lotfollahi, Synthesis of ferrofluids based on cobalt ferrite nanoparticles: influence of reaction time on structural, morphological and magnetic properties. J. Magn. Magn. Mater. 434, 78–85 (2017)

    Article  ADS  Google Scholar 

  18. Y. Yuan, S. Wei, Y. Liang, Y. Wang, B. Wang, W. Huang, X. Wang, Effects of polyvinylpyrrolidone content on structure and microwave absorption properties of cobalt ferrite. J. Magn. Magn. Mater. 506, 166791 (2020)

    Article  Google Scholar 

  19. M. Gharibshahian, O. Mirzaee, M.S. Nourbakhsh, Evaluation of superparamagnetic and biocompatible properties of mesoporous silica coated cobalt ferrite nanoparticles synthesized via microwave modified Pechini method. J. Magn. Magn. Mater. 425, 48–56 (2017)

    Article  Google Scholar 

  20. C. Dey, K. Baishya, A. Ghosh, M.M. Goswami, A. Ghosh, K. Mandal, Improvement of drug delivery by hyperthermia treatment using magnetic cubic cobalt ferrite nanoparticles. J. Magn. Magn. Mater. 427, 168–174 (2017)

    Article  ADS  Google Scholar 

  21. A. Ghasemi, S. Ekhlasi, M. Mousavinia, Effect of Cr and Al substitution cations on the structural and magnetic properties of Ni0.6Zn0.4Fe2−xCrx/2Alx/2O4 nanoparticles synthesized using the sol–gel auto-combustion method. J. Magn. Magn. Mater. 354, 136–145 (2014)

    Article  ADS  Google Scholar 

  22. F. Ansari, A. Sobhani, M. Salavati-Niasari, Facile synthesis, characterization and magnetic property of CuFe12O19 nanostructures via a sol–gel auto-combustion process. J. Magn. Magn. Mater. 401, 362–369 (2016)

    Article  ADS  Google Scholar 

  23. S.S. Bhatu, V.K. Lakhani, A.R. Tanna, N.H. Varsoya, J.U. Buch, P.U. Sharma, U.N. Trivedi, H.H. Joshi, K.B. Modi, Ind. J. Pure Appl. Phys. 45, 596–608 (2007)

    Google Scholar 

  24. M.A. Islam, A.K.M. Akther Hossain, M.Z. Ahsan, M.A.A. Bally, M. Samir Ullah, S.M. Hoque, F.A. Khan, Structural characteristics, cation distribution, and elastic properties of Cr3+ substituted stoichiometric and non-stoichiometric cobalt ferrites. RSC Adv. 12, 8502 (2022)

    Article  ADS  Google Scholar 

  25. W.A. Farooq, M. Sajjad Ul Hasan, M.I. Khan, A.R. Ashraf, M. Abdul Qayyum, N. Yaqub, M.A. Almutairi, M. Atif, A. Hanif, Structural, optical and electrical properties of Cu0.6CoxZn0.4-xFe2O4 (x = 0.0, 0.1, 0.2, 0.3, 0.4) soft ferrites. Molecules 26, 1399 (2021)

    Article  Google Scholar 

  26. M.H. Habibi, H.J. Parhizkar, FTIR and UV–vis diffuse reflectance spectroscopy studies of the wet chemical (WC) route synthesized nano-structure CoFe2O4 from CoCl2 and FeCl3. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 127, 102–106 (2014)

    Article  ADS  Google Scholar 

  27. R. Lamouri, O. Mounkachi, E. Salmani, M. Hamedoun, A. Benyoussef, H. Ez-Zahraouy, Size effect on the magnetic properties of CoFe2O4 nanoparticles: a Monte Carlo study. Ceram. Int. 46(6), 8092–8096 (2020)

    Article  Google Scholar 

  28. M. Almasi Kashi, S. Alikhanzadeh-Arani, E. Bagherian Jebeli, A.H. Montazer, Detailed magnetic characteristics of cobalt ferrite (CoxFe3–xO4) nanoparticles synthesized in the presence of PVP surfactant. Appl.Phys. A 126, 1–9 (2020)

    Article  Google Scholar 

  29. M. Sivakumar, S. Kanagesan, V. Umapathy, R. Suresh Babu, S. Nithiyanantham, Study of CoFe2O4 particles synthesized with various concentrations of PVP polymer. J. Supercond. Novel Magn. 26, 725–731 (2013)

    Article  Google Scholar 

  30. F. Chalmers, Maxwell’s methodology and his application of it to electro-magnetism. Stud. Hist. Philos. Sci. 4(2), 107–164 (1973)

    Article  Google Scholar 

  31. K.W. Wagner, Zur theorie der unvollkommenen dielektrika. Annalen der Physik 345(5), 817–855 (1913)

    Article  ADS  Google Scholar 

  32. C.G. Koops, On the dispersion of resistivity and dielectric constant of some semiconductors at audiofrequencies. Phys. Rev. 83(1), 121 (1951)

    Article  ADS  Google Scholar 

  33. M.P. Reddy, W. Madhuri, N.R. Reddy, K.S. Kumar, V.R.K. Murthy, R.R. Reddy, Influence of copper substitution on magnetic and electrical properties of MgCuZn ferrite prepared by microwave sintering method. Mater. Sci. Eng., C 30(8), 1094–1099 (2010)

    Article  Google Scholar 

  34. P.B. Belavi, G.N. Chavan, L.R. Naik, R. Somashekar, R.K. Kotnala, Structural, electrical and magnetic properties of cadmium substituted nickel–copper ferrites. Mater. Chem. Phys. 132(1), 138–144 (2012)

    Article  Google Scholar 

  35. N. B. Velhal, N. D. Patil, A. R. Shelke, N. G. Deshpande, V. R. Puri. Structural, dielectric and magnetic properties of nickel substituted cobalt ferrite nanoparticles: effect of nickel concentration. AIP Adv. 5(9) (2015)

  36. R.G. Kharabe, R.S. Devan, C.M. Kanamadi, B.K. Chougule, Dielectric properties of mixed Li–Ni–Cd ferrites. Smart Mater. Struct. 15(2), N36 (2006)

    Article  Google Scholar 

  37. M.A. Ahmed, M.K. El Nimr, A. Tawfik, A.M. El Hasab, Dielectric behaviour in Ni-Al ferrites at low frequencies. J. Magn. Magn. Mater. 98(1–2), 33–36 (1991)

    Article  ADS  Google Scholar 

  38. V.L. Mathe, K.K. Patankar, M.B. Kothale, S.B. Kulkarni, P.B. Joshi, S.A. Patil, Preparation, structural analysis and dielectric properties of Bi x La 1–x FeO3 perovskite. Pramana 58(2002), 1105–1113 (2002)

    Article  ADS  Google Scholar 

  39. K. Singh, T.C. Goel, R.G. Mendiratta, O.P. Thakur, C. Prakash, Dielectric properties of Mn-substituted Ni–Zn ferrites. J. Appl. Phys. 91(10), 6626–6629 (2002)

    Article  ADS  Google Scholar 

  40. M. Mylarappa, V. Venkata Lakshmi, S. Kantharaju. Recycling and Reusing of Li2CO3 and Co(OH)2 from waste lithium ion batteries for energy storage and thermal studies. J. Waste Manag. Disposal., 301 (2019)

  41. S.J. Uke, S.P. Mardikar, D.R. Bambole, Y. Kumar, G.N. Chaudhari, Sol-gel citrate synthesized Zn doped MgFe2O4 nanocrystals: a promising supercapacitor electrode material. Mater. Sci.Energy Technol. 3, 446–455 (2020)

    Google Scholar 

Download references

Acknowledgements

The authors grateful to acknowledge the Principal, TVKGAC, Thiruvarur, provided necessary assistance to complete this work.

Author information

Authors and Affiliations

Authors

Contributions

T. Lakshmigandhan, S. Nithiyanantham, S. Mahalakshmi, K. Kogulakrishnan carried the experimental work and wrote the paper. R. Mohan, N. V. Giridharan, B. Gunasekaran, L. Palaniappan assisted for analysis interpretation.

Corresponding author

Correspondence to S. Nithiyanantham.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lakshmigandhan, T., Nithiyanantham, S., Mahalakshmi, S. et al. Structural, electrical and magnetic studies on CoFe2O4 nanoparticles with polyvinylpyrrolidone (PVP) via sol–gel approach. Appl. Phys. A 130, 390 (2024). https://doi.org/10.1007/s00339-024-07530-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-024-07530-7

Keywords

Navigation