Skip to main content
Log in

Structural and photoluminescence properties of terbium (III) activated Li2SiO3 phosphors: an approach for bluish-green light emission

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, a series of bluish-green emitting Li2SiO3:xTb3+(x = 0.01, 0.02, 0.03, 0.04 and 0.05 mol) phosphors were synthesized by solid state reaction method. The effects of Tb3+ doping concentration on photoluminescence (PL) properties of Li2SiO3:xTb3+ were investigated. Powder X-ray diffraction (PXRD) analysis show that the prepared phosphors confirm the sample has orthorhombic crystal structure. Energy dispersive X-ray analysis (EDX) shown that Tb element are uniformly doped in Li2SiO3 phosphor with a proper stoichiometric ratio. UV–Visible absorption spectroscopy was used to determine the band gap of Li2SiO3:0.04Tb3+ phosphor. The near ultraviolet light at the wavelength of 379 nm can excite this phosphor and exhibits blue emission at 484 nm at transition 5D3 → 7F6, and green emission at 541 nm at transition 5D4 → 7F5. The critical quenching concentration of Tb3+ in Li2SiO3host is 0.04 mol. The life time measurements were also performed for Li2SiO3:0.04Tb3+ phosphor and estimated average life time. From the photometric properties result indicates that prepared phosphors were emit bluish-green light and they were useful for the solid state lighting applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

The author’s states that analysed and relevant data of synthesized materials, which are including and described in the manuscript will be freely available to researchers and scientists who are working purpose of research and social welfare.

References

  1. Q. Li, Z.P. Liu, X.J. Li, L.M. Dong, J. Nanomater. Biostruct. 11, 313 (2016)

    Google Scholar 

  2. I. Sabikoglu, M. Ayvacıklı, A. Bergeron, A. Ege, N. Can, J. Lumin. 132, 1597 (2012). https://doi.org/10.1016/j.jlumin.2012.02.008

    Article  Google Scholar 

  3. C. Qian, T. Zeng, H. Liu, Adv. Condens. Matter Phys. 2013, 1 (2013). https://doi.org/10.1155/2013/519869

    Article  Google Scholar 

  4. Y.S. Liu, D.T. Tu, H.M. Zhu, X.Y. Chen, Chem. Soc. Rev. 42, 6924 (2013). https://doi.org/10.1039/C3CS60060B

    Article  Google Scholar 

  5. P.A. Tanner, J. Nanosci. Nanotechnol. 5, 1455 (2005). https://doi.org/10.1166/jnn.2005.311

    Article  Google Scholar 

  6. G.Y. Adachi, N. Imanaka, The binary rare earth oxides. Chem. Rev. 98, 1479 (1998). https://doi.org/10.1021/cr940055h

    Article  Google Scholar 

  7. Y. Wang, Y. Liu, Q. Xiao, H. Zhu, R. Li, X. Chen, Nanoscale 3, 3164 (2011). https://doi.org/10.1039/c1nr10341e

    Article  ADS  Google Scholar 

  8. K. Binnemans, Chem. Rev. 109, 4283 (2009). https://doi.org/10.1021/cr8003983

    Article  Google Scholar 

  9. P.A. Tanner, B. Yan, H. Zhang, J. Mater. Sci. 35, 4325 (2000). https://doi.org/10.1023/A:1004892520502

    Article  ADS  Google Scholar 

  10. A. Alemi, S. Khademinia, S.W. Joo, M. Dolatyari, A. Bakhtiari, Int. Nano Lett. 3, 14 (2013). https://doi.org/10.1186/2228-5326-3-14

    Article  Google Scholar 

  11. C.H. Lu, L.W. Cheng, J. Mater. Chem. 10, 1403 (2000). https://doi.org/10.1039/A909130K

    Article  Google Scholar 

  12. V. Subramanian, C.L. Chen, H.S. Chou, G.T.K. Fey, J. Mater. Chem. 11, 3348 (2001). https://doi.org/10.1039/B105008G

    Article  Google Scholar 

  13. H.A. Mosqueda, H. Pfeiffer, Kinetic analysis of the thermal decomposition of Li4Ti5O12 pellets. Process. Appl. Ceram. 5, 199 (2011). https://doi.org/10.2298/PAC1104199M

    Article  Google Scholar 

  14. W. Li, D. Zhao, Adv. Mater. 25, 142 (2013). https://doi.org/10.1002/adma.201203547

    Article  ADS  Google Scholar 

  15. N.R. Pradhan, D. Rhodes, Q. Zhang, S. Talapatra, M. Terrones, P. Ajayan, L. Balicas, Appl. Phys. Lett. 102, 123105 (2013). https://doi.org/10.1063/1.4799172

    Article  ADS  Google Scholar 

  16. Z. Bai, R. Chen, P. Si, Y. Huang, H. Sun, D.-H. Kim, ACS Appl. Mater. Interfaces 5, 5856 (2013). https://doi.org/10.1021/am401528w

    Article  Google Scholar 

  17. X.Q. Li, H.J. Guo, L.M. Li, X.H. Li, Z.X. Wang, H.K. Xiang, Trans. Nonferrous Met. Soc. China 21, 529 (2011). https://doi.org/10.1016/S1003-6326(11)60747-4

    Article  Google Scholar 

  18. A. Alemi, S. Khademinia, M. Sertko, JNS 4, 407 (2014). https://doi.org/10.7508/jns.2014.04.001

    Article  Google Scholar 

  19. N. Singh, V. Singh, S. Watanabe, T.K. Gundu Rao, J.F.D. Chubaci, N.F. Cano, M.S. Pathak, P.K. Singh, S.J. Dhoble, J. Electron. Mater. 46, 451 (2017). https://doi.org/10.1007/s11664-016-4899-1

    Article  ADS  Google Scholar 

  20. E.D.R. Hyde, A. Seyfaee, F. Neville, R.M. Atanasio, Ind. Eng. Chem. Res. 55, 8891 (2016). https://doi.org/10.1021/acs.iecr.6b01839

    Article  Google Scholar 

  21. N.T. Han, V.K. Dien, M.-F. Lin, Sci. Rep. 11, 7683 (2021). https://doi.org/10.1038/s41598-021-87269-w

    Article  ADS  Google Scholar 

  22. L. Tsonev, Opt. Mater. 30, 892 (2008). https://doi.org/10.1016/j.optmat.2007.03.011

    Article  ADS  Google Scholar 

  23. N. Korsunskaa, L. Borkovskaa, Y. Polischuka, O. Kolomysa, P. Lytvyna, I. Markevicha, V. Strelchuka, V. Kladkoa, O. Melnichukb, L. Melnichukb, L. Khomenkovaa, C. Guillaumec, X. Portierc, Mater. Sci. Semicond. 94, 51 (2019). https://doi.org/10.1016/j.mssp.2019.01.041

    Article  Google Scholar 

  24. B. Wang, Q. Ren, O. Hai, X. Wu, RSC Adv. 7, 15222 (2017). https://doi.org/10.1039/C6RA28122B

    Article  ADS  Google Scholar 

  25. N.S. Singha, S.D. Singha, S.D. Meetei, Chin. Phys. B 23, 058104 (2014). https://doi.org/10.1088/1674-1056/23/5/058104

    Article  Google Scholar 

  26. J. Liu, Z.C. Wu, P. Wang, Y.M. Mei, M. Jiang, S.P. Kuang, Lumin. 29, 868 (2014). https://doi.org/10.1002/bio.2634

    Article  Google Scholar 

  27. H. Zhang, Y. Wang, L. Xie, J. Lumin. 130, 2089 (2010). https://doi.org/10.1016/j.jlumin.2010.05.032

    Article  Google Scholar 

  28. S. Srivastava, S.K. Behera, B.B. Nayak, Opt. Mater. 107, 110178 (2020). https://doi.org/10.1016/j.optmat.2020.110178

    Article  Google Scholar 

  29. Y. Su, Y. Iwasa, T. Yanagida, Y. Tsujimoto, S. Luo, H. Ogino, Opt. Mater. Express 12, 3837 (2022). https://doi.org/10.1364/OME.461592

    Article  ADS  Google Scholar 

  30. Z. Yahiaouia, M.A. Hassairia, M. Dammaka, E. Cavallib, F. Mezzadri, J. Lumin. 194, 96 (2018). https://doi.org/10.1016/j.jlumin.2017.10.001

    Article  Google Scholar 

  31. R.E. Muenchausen, L.G. Jacobsohn, B.L. Bennett, E.A. McKigney, J.F. Smith, J.A. Valdez, D.W. Cooke, J. Lumin. 126, 838 (2007). https://doi.org/10.1016/j.jlumin.2006.12.004

    Article  Google Scholar 

  32. J. Banga, M. Abboudib, B. Abramsa, P.H. Holloway, J. Lumin. 106, 177 (2004). https://doi.org/10.1016/j.jlumin.2003.09.005

    Article  Google Scholar 

  33. Z.Y. Mao, Y.C. Zhu, L. Gan, Y. Zeng, F.F. Xu, Y. Wang, H. Tian, J. Li, D. Wang, J. Lumin. 134, 148 (2013). https://doi.org/10.1016/j.jlumin.2012.08.057

    Article  Google Scholar 

  34. B. Lia, X. Huanga, H. Guoa, Y. Zeng, Dyes Pigm. 150, 67 (2018). https://doi.org/10.1016/j.dyepig.2017.11.003

    Article  Google Scholar 

  35. P.Z. Zambare, A.P. Zambare, K.V.R. Murthy, O.H. Mahajan, Arch. Phy. Res. 2, 159 (2011)

    Google Scholar 

  36. K. Lingannaa, S. Jub, C. Basavapoornimac, V. Venkatramud, C.K. Jayasankarc, J. Asian Ceram. Soc. 6, 82 (2018). https://doi.org/10.1080/21870764.2018.1442674

    Article  Google Scholar 

  37. Q. Wei, C. Ma, C. Zhang, M. Zhao, Z. Zhang, C. Su, J. Phys. Conf. Ser. 1907, 012025 (2021). https://doi.org/10.1088/1742-6596/1907/1/012025

    Article  Google Scholar 

  38. C. Jia, E. Xie, A. Peng, R. Jiang, F. Ye, H. Lin, T. Xu, Thin Solid Films 496, 555 (2006). https://doi.org/10.1016/j.tsf.2005.08.378

    Article  ADS  Google Scholar 

  39. L. Xiaoxia, W. Yuhua, J. Rare Earths 28, 361 (2010). https://doi.org/10.1016/S1002-0721(09)60112-5

    Article  Google Scholar 

  40. Z. Xu, Y. Li, Z. Liu, D. Wang, J. Alloys Compd. 391, 202 (2005). https://doi.org/10.1016/j.jallcom.2004.08.088

    Article  Google Scholar 

  41. K.V.R. Murthy, A.S. Sai Prasad, M. Ramaligeshwar Rao, Phys. Procedia 29, 70 (2012). https://doi.org/10.1016/j.phpro.2012.03.695

    Article  ADS  Google Scholar 

  42. Y.P. Naik, M. Mohapatra, N.D. Dahale, T.K. Seshagiri, V. Natarajan, S.V. Godbole, J. Lumin. 129, 1225 (2009). https://doi.org/10.1016/j.jlumin.2009.06.001

    Article  Google Scholar 

  43. P. Barik, A. Verma, R. Kumar, V. Kumar, I.P. Sahu, Appl. Phys. A 129, 677 (2023). https://doi.org/10.1007/s00339-023-06961-y

    Article  ADS  Google Scholar 

  44. T. Chengaiah, C.K. Jayasankar, A.M. Babu, L.R. Moorthy, Mater. Express 4, 153 (2014). https://doi.org/10.1166/mex.2014.1149

    Article  Google Scholar 

  45. B. Nandan, M.C. Bhatnagar, S.C. Kashyap, Appl. Phys. A 124, 756 (2018). https://doi.org/10.1007/s00339-018-2181-5

    Article  ADS  Google Scholar 

  46. I. Sabikoglu, Adv. Powder Technol. 33, 103685 (2022). https://doi.org/10.1016/j.apt.2022.103685

    Article  Google Scholar 

  47. A. Seyhan, E. Kartal, Coatings 13, 1719 (2023). https://doi.org/10.3390/coatings13101719

    Article  Google Scholar 

  48. A. Hassid, M. Klinger, S. Krzack, H. Cohen, ACS Omega 7, 1893 (2022). https://doi.org/10.1021/acsomega.1c05296

    Article  Google Scholar 

  49. P. Sehrawat, A. Khatkar, P. Boora, A. Hooda, M. Kumar, R.K. Malik, S.P. Khatkar, V.B. Taxak, J. Mater. Sci. Mater. Electron. 31, 6072 (2020). https://doi.org/10.1007/s10854-020-03160-w

    Article  Google Scholar 

  50. A. Prasad, A. Basu, M.K. Mahata, J. Ovonic Res. 7, 61 (2011)

    Google Scholar 

  51. A. Alemi, S. Khademinia, Int. Nano Lett. 5, 15 (2015). https://doi.org/10.1007/s40089-014-0131-6

    Article  Google Scholar 

  52. P.R. Jabu, O.S. Obaseki, A.N. Abutu, F.K. Yam, Y. Yusof, M.B. Ochang, Results Opt. 9, 100273 (2022). https://doi.org/10.1016/j.rio.2022.100273

    Article  Google Scholar 

  53. K. Linganna, S. Ju, Ch. Basavapoornima, V. Venkatramu, C.K. Jayasankar, J. Asian Ceram. Soc. 6, 82 (2018). https://doi.org/10.1080/21870764.2018.1442674

    Article  Google Scholar 

  54. X. Min, Z. Huang, M. Fang, Y.G. Liu, C. Tang, X. Wu, Inorg. Chem. 53, 6060 (2014). https://doi.org/10.1021/ic500412r

    Article  Google Scholar 

  55. S.K. Pathak, A. Verma, A. Verma, I.P. Sahu, Phys. B: Condens. Matter 602, 412612 (2020). https://doi.org/10.1016/j.physb.2020.412612

    Article  Google Scholar 

  56. A.K. Verma, D.P. Bisen, N. Brahme, I.P. Sahu, A.K. Singh, J. Mater. Sci. Mater. Electron. 34, 644 (2023). https://doi.org/10.1007/s10854-023-10022-8

    Article  Google Scholar 

  57. J. Zheng, C. Guo, X. Ding, Z. Ren, J. Bai, Curr. Appl. Phys. 12, 643 (2012). https://doi.org/10.1016/j.cap.2011.09.012

    Article  ADS  Google Scholar 

  58. I. Gupta, S. Singh, S. Bhagwan, D. Singh, Ceram. Int. 47, 19282 (2021). https://doi.org/10.1016/j.ceramint.2021.03.308

    Article  Google Scholar 

  59. D. Ramachari, L. Rama Moorthy, C.K. Jayasankar, Ceram. Int. 40, 11115 (2014). https://doi.org/10.1016/j.ceramint.2014.03.136

    Article  Google Scholar 

Download references

Acknowledgements

The corresponding author; Dr. Ishwar Prasad Sahu, would like to acknowledge the Science & Engineering Research Board (SERB), New Delhi, Government of India for funding FTIR Spectrophotometer (CRG/2018/004139). This instrument is used for the IR spectroscopic analysis of the prepared sample from the study.

Funding

The corresponding author Ishwar Prasad Sahu, is thankful to University Grant Commission (UGC) for the UGC-BSR Start-up Fellowship (No. F.30–420/2018 (BSR), dated 23/10/2018), Government of India.

Author information

Authors and Affiliations

Authors

Contributions

Priya Barik and Ishwar Prasad Sahu: Investigate, designed the whole research, Conceptualization, synthesized all the samples, and collected experimental data, Data plotting, writing of the manuscript, and editing of manuscript corresponding to the journals. Aksh Kumar Verma and Manorama Sahu: manuscript editing, thoroughly analysis. Pradeep Dewangan: formatting the manuscript. Ravinder Kumar and Vinod Kumar: review and editing the manuscript and proposed many good suggestions.

Corresponding author

Correspondence to Ishwar Prasad Sahu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barik, P., Verma, A.K., Kumar, R. et al. Structural and photoluminescence properties of terbium (III) activated Li2SiO3 phosphors: an approach for bluish-green light emission. Appl. Phys. A 130, 391 (2024). https://doi.org/10.1007/s00339-024-07525-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-024-07525-4

Keywords

Navigation