Skip to main content
Log in

Optical and magnetic studies of Co0.7Zn0.3Fe2O4 spinel ferrites with Dy3+ substituted for the application of sensors prepared through sol–gel process

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Dysprosium (Dy3+) substituted cobalt-zinc spinel ferrites were synthesized having composition (Co0.7Zn0.3 Dy3+ xFe2−xO4) with the concentration ranges from (0.00, 0.5, 0.10, 0.15, and 0.20) by using the Sol–Gel synthesis. XRD analysis confirmed the FCC spinel structure of the prepared samples. Lattice constant and X-ray density were calculated in variance ranging from 8.40–8.46 Å and 5.28–5.77 g/cm3, respectively. Fourier Transformation Infrared Spectroscopy (FTIR) were used to measure the frequency band in between 411–562 cm−1 for the tetra and octahedral positions. Scanning electron microscopy was used to study the surface morphology of the prepared samples. The field emission transmission electron microscopy (FE-TEM) was used for the confirmation of particle size. The calculated value of crystalline size was 13 nm, while particle size was the best on 23 nm. It was observed that, on applied field frequency the dielectric parameters exhibits decreasing trend. Magnetic properties were examined by Vibrating Sample Magnetometer (VSM) method and found out saturation magnetization (63.99 emu/g), anisotropy (K) (5366.82 J/m3) and magnetic moment (2.77) were in decreasing while retentivity (2.38 emu/g), squareness ratio (0.07) and coercivity Hc (133.71Oe) were in increasing trend respectively. These features of Dy3+ substituted Co–Zn spinel ferrites recommend their better use in sensors and high frequency devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The data that support the findings are available from the corresponding author, (author initials), upon reasonable request.

References

  1. R. Kadam, K. Desai, V.S. Shinde, M. Hashim, S.E. Shirsath, Influence of Gd3+ ion substitution on the MnCrFeO4 for their nanoparticle shape formation and magnetic properties. J. Alloy. Compd. 657, 487–494 (2016)

    Article  Google Scholar 

  2. S. Karimunnesa, A.A. Ullah, M. Hasan, F. Shanta, R. Islam, M. Khan, Effect of holmium substitution on the structural, magnetic and transport properties of CoFe2xHoxO4 ferrites. J. Magn. Magn. Mater. 457, 57–63 (2018)

    Article  ADS  Google Scholar 

  3. A. Subramanian, S. Jaganathan, A. Manikandan, K. Pandiaraj, N. Gomathi, E. Supriyanto, Recent trends in nano-based drug delivery systems for efficient delivery of phytochemicals in chemotherapy. RSC Adv. 6, 48294–48314 (2016)

    Article  ADS  Google Scholar 

  4. A.G. Abraham, A. Manikandan, E. Manikandan, S. Vadivel, S. Jaganathan, A. Baykal, P.S. Renganathan, Enhanced magneto-optical and photo-catalytic properties of transition metal cobalt (Co2+ ions) doped spinel MgFe2O4 ferrite nanocomposites. J. Magn. Magn. Mater. 452, 380–388 (2018)

    Article  ADS  Google Scholar 

  5. M.S. Hossain, M.B. Alam, M. Shahjahan, M.H.A. Begum, M.M. Hossain, S. Islam, N. Khatun, M. Hossain, M.S. Alam, M. Al-Mamun, Synthesis, structural investigation, dielectric and magnetic properties of Zn2+-doped cobalt ferrite by the sol–gel technique. J. Adv. Dielectr. 8, 1850030 (2018)

    Article  ADS  Google Scholar 

  6. M.K. Zate, V.V. Jadhav, S.K. Gore, J.H. Shendkar, S.U. Ekar, A. Al-Osta, M. Naushad, R.S. Mane, Structural, morphological and electrochemical supercapacitive properties of sprayed manganese ferrite thin film electrode. J. Anal. Appl. Pyrol. 122, 224–229 (2016)

    Article  Google Scholar 

  7. D.-L. Zhao, Q. Lv, Z.-M. Shen, Fabrication and microwave absorbing properties of Ni–Zn spinel ferrites. J. Alloy. Compd. 480, 634–638 (2009)

    Article  Google Scholar 

  8. F. Li, J. Liu, D.G. Evans, X. Duan, Stoichiometric synthesis of pure MFe2O4 (M = Mg Co, and Ni) spinel ferrites from tailored layered double hydroxide (hydrotalcite-like) precursors. Chem. Mater. 16, 1597–1602 (2004)

    Article  Google Scholar 

  9. V.K. Mande, D.N. Bhoyar, S. Vyawahare, K. Jadhav, Effect of Zn2+–Cr3+ substitution on structural, morphological, magnetic and electrical properties of NiFe2O4 ferrite nanoparticles. J. Mater. Sci. Mater. Electron. 29, 15259–15270 (2018)

    Article  Google Scholar 

  10. M.M.L. Sonia, S. Anand, V.M. Vinosel, M.A. Janifer, S. Pauline, A. Manikandan, Effect of lattice strain on structure, morphology and magneto-dielectric properties of spinel NiGdxFe2xO4 ferrite nano-crystallites synthesized by sol-gel route. J. Magn. Magn. Mater. 466, 238–251 (2018)

    Article  ADS  Google Scholar 

  11. A. Radoń, S. Łoński, M. Kądziołka-Gaweł, P. Gębara, M. Lis, D. Łukowiec, R. Babilas, Influence of magnetite nanoparticles surface dissolution, stabilization and functionalization by malonic acid on the catalytic activity, magnetic and electrical properties. Colloids Surf. A 607, 125446 (2020)

    Article  Google Scholar 

  12. C. Stergiou, Magnetic, dielectric and microwave absorption properties of rare earth doped Ni–Co and Ni–Co–Zn spinel ferrites. J. Magn. Magn. Mater. 426, 629–635 (2017)

    Article  ADS  Google Scholar 

  13. M. Ajmal, M.U. Islam, G.A. Ashraf, M.A. Nazir, M. Ghouri, The influence of Ga doping on structural magnetic and dielectric properties of NiCr0.2Fe1.8O4 spinel ferrite. Physica B 526, 149–154 (2017)

    Article  ADS  Google Scholar 

  14. N. Lwin, M.A. Fauzi, S. Sreekantan, R. Othman, Physical and electromagnetic properties of nanosized Gd substituted Mg–Mn ferrites by solution combustion method. Physica B 461, 134–139 (2015)

    Article  ADS  Google Scholar 

  15. A. Sattar, A. Wafik, K. El-Shokrofy, M. El-Tabby, Magnetic properties of Cu–Zn ferrites doped with rare earth oxides. Phys. Status Solidi (A) 171, 563–569 (1999)

    Article  ADS  Google Scholar 

  16. G. Dascalu, T. Popescu, M. Feder, O. Caltun, Structural, electric and magnetic properties of CoFe1.8RE0.2O4 (RE = Dy, Gd, La) bulk materials. J. Magn. Magn. Mater. 333, 69–74 (2013)

    Article  ADS  Google Scholar 

  17. M. Abdellatif, G. El-Komy, A. Azab, Magnetic characterization of rare earth doped spinel ferrite. J. Magn. Magn. Mater. 442, 445–452 (2017)

    Article  ADS  Google Scholar 

  18. R.K. Singh, J. Shah, R. Kotnala, Magnetic and dielectric properties of rare earth substituted Ni0.5Zn0.5Fe1.95R0.05O4 (R = Pr, Sm and La) ferrite nanoparticles. Mater. Sci. Eng. B 210, 64–69 (2016)

    Article  Google Scholar 

  19. A. Radoń, J. Kubacki, M. Kądziołka-Gaweł, P. Gębara, Ł Hawełek, S. Topolska, D. Łukowiec, Structure and magnetic properties of ultrafine superparamagnetic Sn-doped magnetite nanoparticles synthesized by glycol assisted co-precipitation method. J. Phys. Chem. Solids 145, 109530 (2020)

    Article  Google Scholar 

  20. R.S. Yadav, J. Havlica, J. Masilko, L. Kalina, J. Wasserbauer, M. Hajdúchová, V. Enev, I. Kuřitka, Z. Kožáková, Impact of Nd3+ in CoFe2O4 spinel ferrite nanoparticles on cation distribution, structural and magnetic properties. J. Magn. Magn. Mater. 399, 109–117 (2016)

    Article  ADS  Google Scholar 

  21. J.P. Singh, J.Y. Park, V. Singh, S.H. Kim, W.C. Lim, H. Kumar, Y. Kim, S. Lee, K.H. Chae, Correlating the size and cation inversion factor in context of magnetic and optical behavior of CoFe2O4 nanoparticles. RSC Adv. 10, 21259–21269 (2020)

    Article  ADS  Google Scholar 

  22. N. Rezlescu, E. Rezlescu, C. Pasnicu, M. Craus, Effects of the rare-earth ions on some properties of a nickel-zinc ferrite. J. Phys. Condens. Matter 6, 5707 (1994)

    Article  ADS  Google Scholar 

  23. A. Radoń, A. Włodarczyk, Ł Sieroń, M. Rost-Roszkowska, Ł Chajec, D. Łukowiec, A. Ciuraszkiewicz, P. Gębara, S. Wacławek, A. Kolano-Burian, Influence of the modifiers in polyol method on magnetically induced hyperthermia and biocompatibility of ultrafine magnetite nanoparticles. Sci. Rep. 13, 7860 (2023)

    Article  ADS  Google Scholar 

  24. S.I. Ahmad, S.A. Ansari, D.R. Kumar, Structural, morphological, magnetic properties and cation distribution of Ce and Sm co-substituted nano crystalline cobalt ferrite. Mater. Chem. Phys. 208, 248–257 (2018)

    Article  Google Scholar 

  25. H. Noor ul Huda Khan Asghar, M. Khalid, Z.A. Gilani, M.S. Shifa, A. Parveen, M. Ahmed, J.K. Khan, M. Afzal, F.A. Sheikh, Structural and magnetic properties of Co–Cd–Zn spinel ferrite nanoparticles synthesized through micro-emulsion method. Opt. Quantum Electron. 53, 1–12 (2021)

    Article  Google Scholar 

  26. Z. Karimi, Y. Mohammadifar, H. Shokrollahi, S.K. Asl, G. Yousefi, L. Karimi, Magnetic and structural properties of nano sized Dy-doped cobalt ferrite synthesized by co-precipitation. J. Magn. Magn. Mater. 361, 150–156 (2014)

    Article  ADS  Google Scholar 

  27. A. Ziarati, A. Sobhani-Nasab, M. Rahimi-Nasrabadi, M.R. Ganjali, A. Badiei, Sonication method synergism with rare earth based nanocatalyst: preparation of NiFe2–xEuxO4 nanostructures and its catalytic applications for the synthesis of benzimidazoles, benzoxazoles, and benzothiazoles under ultrasonic irradiation. J. Rare Earths 35, 374–381 (2017)

    Article  Google Scholar 

  28. A.B. Mugutkar, S.K. Gore, R.S. Mane, K.M. Batoo, S.F. Adil, S.S. Jadhav, Magneto-structural behaviour of Gd doped nanocrystalline Co–Zn ferrites governed by domain wall movement and spin rotations. Ceram. Int. 44, 21675–21683 (2018)

    Article  Google Scholar 

  29. E.V. Gopalan, P. Joy, I. Al-Omari, D.S. Kumar, Y. Yoshida, M. Anantharaman, On the structural, magnetic and electrical properties of sol–gel derived nanosized cobalt ferrite. J. Alloy. Compd. 485, 711–717 (2009)

    Article  Google Scholar 

  30. R.K. Sharma, O. Suwalka, N. Lakshmi, K. Venugopalan, A. Banerjee, P. Joy, Synthesis of chromium substituted nano particles of cobalt zinc ferrites by coprecipitation. Mater. Lett. 59, 3402–3405 (2005)

    Article  Google Scholar 

  31. A. Pachpinde, M. Langade, K. Lohar, S. Patange, S.E. Shirsath, Impact of larger rare earth Pr3+ ions on the physical properties of chemically derived PrxCoFe2xO4 nanoparticles. Chem. Phys. 429, 20–26 (2014)

    Article  Google Scholar 

  32. M. Mallapur, P. Shaikh, R. Kambale, H. Jamadar, P. Mahamuni, B. Chougule, Structural and electrical properties of nanocrystalline cobalt substituted nickel zinc ferrite. J. Alloy. Compd. 479, 797–802 (2009)

    Article  Google Scholar 

  33. M.A. Gabal, Y. Al Angari, Low-temperature synthesis of nanocrystalline NiCuZn ferrite and the effect of Cr substitution on its electrical properties. J. Magn. Magn. Mater. 322, 3159–3165 (2010)

    Article  ADS  Google Scholar 

  34. S. Mazen, N. Abu-Elsaad, ISRN Condens. Matter Phys. (2012). Article ID 907257

  35. R. Kale, C. Lokhande, Influence of air annealing on the structural, optical and electrical properties of chemically deposited CdSe nano-crystallites. Appl. Surf. Sci. 223, 343–351 (2004)

    Article  ADS  Google Scholar 

  36. A. Ditta, M.A. Khan, M. Junaid, R.A. Khalil, M.F. Warsi, Structural, magnetic and spectral properties of Gd and Dy co-doped dielectrically modified Co-Ni (Ni0.4Co0.6Fe2O4) ferrites. Physica B 507, 27–34 (2017)

    Article  ADS  Google Scholar 

  37. K. Rishi, N. Rana, Particle size and shape analysis using image J with customized tool for segmentation of particles. Int. J. Comput. Sci. Commun. Netw. 4, 23–28 (2015)

    Google Scholar 

  38. G. Salek, P. Dufour, S. Guillemet-Fritsch, C. Tenailleau, Sustainable low temperature preparation of Mn3xCoxO4 (0 ≤ x < 3) spinel oxide colloidal dispersions used for solar absorber thin films. Mater. Chem. Phys. 162, 252–262 (2015)

    Article  Google Scholar 

  39. G. Salek, S. Guillemet, P. Dufour, C. Tenailleau, A simple preparation process of pure Mn3−xCoxO4 (x = 1, 1.5 and 2) desert rose-like nanoparticles and their optical properties. Int. J. Chem. 4 (2012)

  40. B.-K. Park, J.-W. Lee, S.-B. Lee, T.-H. Lim, S.-J. Park, C.-O. Park, R.-H. Song, Cu- and Ni-doped Mn1.5Co1.5O4 spinel coatings on metallic interconnects for solid oxide fuel cells. Int. J. Hydrog. Energy 38, 12043–12050 (2013)

    Article  Google Scholar 

  41. M. Almessiere, A.D. Korkmaz, Y. Slimani, M. Nawaz, S. Ali, A. Baykal, Magneto-optical properties of rare earth metals substituted Co–Zn spinel nanoferrites. Ceram. Int. 45, 3449–3458 (2019)

    Article  Google Scholar 

  42. J.A. Redinz, Forces and work on a wire in a magnetic field. Am. J. Phys. 79, 774–776 (2011)

    Article  ADS  Google Scholar 

  43. V.G. Deonikar, V.D. Kulkarni, S.M. Rathod, H. Kim, Fabrication and characterizations of structurally engineered lanthanum substituted nickel-cobalt ferrites for the analysis of electric and dielectric properties. Inorg. Chem. Commun. 119, 108074 (2020)

    Article  Google Scholar 

  44. M. Aboud, I. Ahmad, S. Arshad, S. Liaqat, Z. Gilani, Q. Nadeem, I. Shakir, The effect of rare earth Dy3+ ions on structural, dielectric and electrical behavior of Ni0.4Co0.6DyyFe2yO4 nano-ferrites synthesized by wet chemical approach. Digest. J. Nanomater. Biostruct. 12, 159 (2017)

    Google Scholar 

  45. U. Shinde, S.E. Shirsath, S. Patange, S. Jadhav, K. Jadhav, V. Patil, Preparation and characterization of Co2+ substituted Li–Dy ferrite ceramics. Ceram. Int. 39, 5227–5234 (2013)

    Article  Google Scholar 

  46. A. Shaikh, S. Bellad, B. Chougule, Temperature and frequency-dependent dielectric properties of Zn substituted Li–Mg ferrites. J. Magn. Magn. Mater. 195, 384–390 (1999)

    Article  ADS  Google Scholar 

  47. C. Koops, On the dispersion of resistivity and dielectric constant of some semiconductors at audiofrequencies. Phys. Rev. 83, 121 (1951)

    Article  ADS  Google Scholar 

  48. N. Singh, A. Agarwal, S. Sanghi, Dielectric relaxation, conductivity behavior and magnetic properties of Mg substituted Zn–Li ferrites. Curr. Appl. Phys. 11, 783–789 (2011)

    Article  ADS  Google Scholar 

  49. M. Costa, G. Pires Jr., A. Terezo, M. Graca, A. Sombra, Impedance and modulus studies of magnetic ceramic oxide Ba2Co2Fe12O22 (Co2Y) doped with Bi2O3. J. Appl. Phys. 110, 034107 (2011)

    Article  ADS  Google Scholar 

  50. J. Joshi, D. Kanchan, M. Joshi, H. Jethva, K. Parikh, Dielectric relaxation, complex impedance and modulus spectroscopic studies of mix phase rod like cobalt sulfide nanoparticles. Mater. Res. Bull. 93, 63–73 (2017)

    Article  Google Scholar 

  51. H. Rodrigues, G.P. Junior, A. Sales, P. Silva, B. Costa, P. Alcantara Jr., S. Moreira, A. Sombra, BiFeO3 ceramic matrix with Bi2O3 or PbO added: Mössbauer, Raman and dielectric spectroscopy studies. Physica B 406, 2532–2539 (2011)

    Article  ADS  Google Scholar 

  52. M.A. Iqbal, M. Islam, I. Ali, I. Sadiq, I. Ali, High frequency dielectric properties of Eu+3-substituted Li–Mg ferrites synthesized by sol–gel auto-combustion method. J. Alloy. Compd. 586, 404–410 (2014)

    Article  Google Scholar 

  53. E.C. Stoner, E. Wohlfarth, A mechanism of magnetic hysteresis in heterogeneous alloys. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 240, 599–642 (1948)

    ADS  Google Scholar 

  54. M. Almessiere, Y. Slimani, A. Baykal, Exchange spring magnetic behavior of Sr0.3Ba0.4Pb0.3Fe12O19/(CuFe2O4) x nanocomposites fabricated by a one-pot citrate sol-gel combustion method. J. Alloy. Compd. 762, 389–397 (2018)

    Article  Google Scholar 

  55. K. Ahalya, N. Suriyanarayanan, S. Sangeetha, Effect of pH and annealing temperatures on structural, magnetic, electrical, dielectric and adsorption properties of manganese ferrite nano particles. Mater. Sci. Semicond. Process. 27, 672–681 (2014)

    Article  Google Scholar 

  56. R. Ali, A. Mahmood, M.A. Khan, A.H. Chughtai, M. Shahid, I. Shakir, M.F. Warsi, Impacts of Ni–Co substitution on the structural, magnetic and dielectric properties of magnesium nano-ferrites fabricated by micro-emulsion method. J. Alloy. Compd. 584, 363–368 (2014)

    Article  Google Scholar 

  57. M. Almessiere, Y. Slimani, H. El Sayed, A. Baykal, Structural and magnetic properties of Ce-Y substituted strontium nanohexaferrites. Ceram. Int. 44, 12511–12519 (2018)

    Article  Google Scholar 

  58. Y. Slimani, H. Güngüneş, M. Nawaz, A. Manikandan, H. El Sayed, M.A. Almessiere, H. Sözeri, S.E. Shirsath, I. Ercan, A. Baykal, Magneto-optical and microstructural properties of spinel cubic copper ferrites with Li-Al co-substitution. Ceram. Int. 44, 14242–14250 (2018)

    Article  Google Scholar 

  59. Y. Slimani, A. Baykal, M. Amir, N. Tashkandi, H. Güngüneş, S. Guner, H. El Sayed, F. Aldakheel, T.A. Saleh, A. Manikandan, Substitution effect of Cr3+ on hyperfine interactions, magnetic and optical properties of Sr-hexaferrites. Ceram. Int. 44, 15995–16004 (2018)

    Article  Google Scholar 

  60. E. Rezlescu, N. Rezlescu, C. Pasnicu, M. Craus, P. Popa, Effects of rare-earth ions on the quality of a Li–Zn ferrite. Cryst. Res. Technol. 31, 343–352 (1996)

    Article  Google Scholar 

  61. K. Maaz, A. Mumtaz, S. Hasanain, M. Bertino, Temperature dependent coercivity and magnetization of nickel ferrite nanoparticles. J. Magn. Magn. Mater. 322, 2199–2202 (2010)

    Article  ADS  Google Scholar 

  62. M. Almessiere, Y. Slimani, H. El Sayed, A. Baykal, I. Ercan, Microstructural and magnetic investigation of vanadium-substituted Sr-nanohexaferrite. J. Magn. Magn. Mater. 471, 124–132 (2019)

    Article  ADS  Google Scholar 

  63. M. Amir, H. Gungunes, Y. Slimani, N. Tashkandi, H. El Sayed, F. Aldakheel, M. Sertkol, H. Sozeri, A. Manikandan, I. Ercan, Mössbauer studies and magnetic properties of cubic CuFe2O4 nanoparticles. J. Supercond. Novel Magn. 32, 557–564 (2019)

    Article  Google Scholar 

  64. H. Bahloul, A. Mokaddem, B. Doumi, M. Berber, A. Boudali, Electronic structures and ferromagnetic properties of 3d (Cr)-doped BaSe barium selenide. J. Supercond. Novel Magn. 32, 2185–2192 (2019)

    Article  Google Scholar 

  65. M. Chand, A. Kumar, S. Kumar, A. Shankar, R. Pant, Investigations on MnxZn1−xFe2O4 (x = 0.1, 0.3 and 0.5) nanoparticles synthesized by sol-gel and co-precipitation methods (2011)

  66. A. Costa, E. Tortella, M. Morelli, R. Kiminami, Synthesis, microstructure and magnetic properties of Ni–Zn ferrites. J. Magn. Magn. Mater. 256, 174–182 (2003)

    Article  ADS  Google Scholar 

  67. R.R. Kanna, N. Lenin, K. Sakthipandi, A.S. Kumar, Structural, optical, dielectric and magnetic studies of gadolinium-added Mn-Cu nanoferrites. J. Magn. Magn. Mater. 453, 78–90 (2018)

    Article  ADS  Google Scholar 

  68. D. Mane, D. Birajdar, S. Patil, S.E. Shirsath, R. Kadam, Redistribution of cations and enhancement in magnetic properties of sol–gel synthesized Cu0.7–xCoxZn0.3Fe2O4 (0 ≤ x ≤ 0.5). J. Sol-Gel Sci. Technol. 58, 70–79 (2011)

    Article  Google Scholar 

  69. K. Pubby, K.V. Babu, S.B. Narang, Magnetic, elastic, dielectric, microwave absorption and optical characterization of cobalt-substituted nickel spinel ferrites. Mater. Sci. Eng. B 255, 114513 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Researcher’s Supporting Project Number (RSPD2024R699) King Saud University, Riyadh, Saudi Arabia, for their support.

Author information

Authors and Affiliations

Authors

Contributions

The role(s) of all authors are listed below on the behalf of all authors. Noor-ul-Haq Khan: conducting a research and investigation process, specifically performing the experiments, or data/evidence collection, preparation, creation and/or presentation of the published work, specifically writing the initial draft. Zaheer Abbas Gilani: development or design of methodology; creation of models. Samiullah: conducting a research and investigation process. Data/evidence collection, preparation, creation and/or presentation of the published work, specifically validation, writing—review and editing. Muhammad Khalid: provision of study materials, instrumentation, computing resources analysis tools. H. M. Noor ul Huda Khan Asghar: ideas; formulation or evolution of overarching research goals and aims, verification, experiments and other research outputs, oversight and leadership responsibility for the research activity planning and execution, including mentorship external to the core team. Muhammad Zubair Nawaz: preparation, creation, specifically critical review, commentary or revision—including pre-or post-publication stages. Syed Mansoor Ali: management and coordination responsibility for the research activity planning and execution. Muhammad Azhar Khan: preparation, creation and/or presentation of the published work, specifically visualization/data presentation. Furhaj Ahmed Sheikh: maintain research data (including software code, where it is necessary for interpreting the data itself) for initial use and later reuse.

Corresponding authors

Correspondence to H. M. Noor ul Huda Khan Asghar or Syed Mansoor Ali.

Ethics declarations

Conflict of interest

The authors of this manuscript declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, NuH., Gilani, Z.A., Samiullah et al. Optical and magnetic studies of Co0.7Zn0.3Fe2O4 spinel ferrites with Dy3+ substituted for the application of sensors prepared through sol–gel process. Appl. Phys. A 130, 321 (2024). https://doi.org/10.1007/s00339-024-07476-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-024-07476-w

Keywords

Navigation