Skip to main content
Log in

Molybdenum assisted self-organized pattern formation by low energy ion beam sputtering

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The mechanism of formation of self-organized patterns on Si substrate with simultaneous co-sputtering of molybdenum by low-energy ion beam sputtering has been investigated. The experiment was carried out using a 1 keV Ar ion beam at normal incidence with different ion fluence (1016–1018 ions.cm−2). To explore the mechanism of pattern evolution in the presence of impurities (Mo atom), the morphological details of the samples with different ion fluence, as well as with respect to the distance from the Mo target were examined by atomic force microscopy (AFM). The evolution of the surface pattern depends on the ion fluence and a pattern transition from ripple to ripple + dot, and dot was observed with distance from the Mo target. RBS, XPS and XRR measurements were also carried out to understand the mechanism of the surface evolution process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article and as supplementary materials.

References

  1. S. Facsko, T. Dekorsy, C. Koerdt, C. Trappe, H. Kurz, A. Vogt, H.L. Hartnagel, Science 285(5433), 1551–1553 (1999)

    Google Scholar 

  2. M.C. Giordano, F.D. Sacco, M. Barelli, G. Portale, F. Buatier de Mongeot, ACS Appl. Nano Mater. 4(2), 1940–1950 (2021)

    Google Scholar 

  3. K. Sarathlal, D. Kumar, V. Ganesan, A. Gupta, Appl. Surf. Sci. 258(9), 4116–4121 (2012)

    ADS  Google Scholar 

  4. D. Repetto, M.C. Giordano, A. Foti, P.G. Gucciardi, C. Mennucci, F.B. de Mongeot, Appl. Surf. Sci. 446, 83–91 (2018)

    ADS  Google Scholar 

  5. D.P. Datta, T. Som, Sol. Energy 223, 367–375 (2021)

    ADS  Google Scholar 

  6. P. Gao, M. Pu, X. Ma, X. Li, Y. Guo, C. Wang, Z. Zhao, X. Luo, Nanoscale 12(4), 2415–2421 (2020)

    Google Scholar 

  7. R. Cuerno, J.-S. Kim, J. Appl. Phys. 128(18), 180902 (2020)

    ADS  Google Scholar 

  8. T.J. Novakowski, J.K. Tripathi, A. Hassanein, J. Vac. Sci. Technol. B 36(5), 051202 (2018)

    Google Scholar 

  9. D. Erb, R. de Schultz, A. Ilinov, K. Nordlund, R.M. Bradley, S. Facsko, Phys. Rev. B 102(16), 165422 (2020)

    ADS  Google Scholar 

  10. R.M. Bradley, J.M. Harper, Films. J. Vac. Sci. Technol. A 6(4), 2390–2395 (1988)

    Google Scholar 

  11. R.M. Bradley, Phys. Rev. E 102(1), 012807 (2020)

    ADS  Google Scholar 

  12. R.M. Bradley, T. Sharath, Phys. Rev. E 103(2), 022804 (2021)

    ADS  Google Scholar 

  13. A.K. Bera, P. Gupta, D. Garai, A. Gupta, D. Kumar, Appl. Surf. Sci. Adv. 6, 100124 (2021)

    Google Scholar 

  14. K. Sarathlal, S. Potdar, M. Gangrade, V. Ganesan, A. Gupta, Adv. Mat. Lett. 4, 398–401 (2013)

    Google Scholar 

  15. S. Koyiloth Vayalil, A. Gupta, S.V. Roth, V. Ganesan, J. Appl. Phys. 117(2), 024309 (2015)

    ADS  Google Scholar 

  16. H. Hofsäss, K. Zhang, Surfactant sputtering. Appl. Phys. A 92(3), 517–524 (2008)

    ADS  Google Scholar 

  17. H. Hofsäss, K. Zhang, A. Pape, O. Bobes, M. Brötzmann, Appl. Phys. A 111(2), 653–664 (2013)

    ADS  Google Scholar 

  18. A. Deka, P. Barman, G. Bhattacharjee, S. Bhattacharyya, Appl. Surf. Sci. 526, 146645 (2020)

    Google Scholar 

  19. A. Redondo-Cubero, F.J. Palomares, R. Hübner, R. Gago, L. Vázquez, Phys. Rev. B 102(7), 075423 (2020)

    ADS  Google Scholar 

  20. S.K. Vayalil, A. Gupta, S.V. Roth, Appl. Phys. A 123(4), 225 (2017)

    ADS  Google Scholar 

  21. R.M. Bradley, Phys. Rev. B 87(20), 205408 (2013)

    ADS  Google Scholar 

  22. S. Macko, F. Frost, M. Engler, D. Hirsch, T. Höche, J. Grenzer, T. Michely, New J. Phys. 13(7), 073017 (2011)

    ADS  Google Scholar 

  23. K.S. Lloyd, I.L. Bolotin, M. Schmeling, L. Hanley, I.V. Veryovkin, Surf. Sci. 652, 334–343 (2016)

    ADS  Google Scholar 

  24. G. Ozaydin, K.F. Ludwig Jr., H. Zhou, R.L. Headrick, J. Vac. Sci. Technol. B 26(2), 551–558 (2008)

    Google Scholar 

  25. J. Muñoz-García, R. Cuerno, M. Castro, Phys. Rev. B 100(20), 205421 (2019)

    ADS  Google Scholar 

  26. D. Nečas, P. Klapetek, Cent. Eur. J. Phys. 10(1), 181–188 (2012)

    Google Scholar 

  27. A. Keller, R. Cuerno, S. Facsko, W. Möller, Phys. Rev. B 79(11), 115437 (2009)

    ADS  Google Scholar 

  28. D. Bhowmik, D. Chowdhury, P. Karmakar, Surf. Sci. 679, 86–92 (2019)

    ADS  Google Scholar 

  29. M. Mayer. AIP Conf. Proc. (1999) 541–544.

  30. J. Zhou, S. Facsko, M. Lu, W. Möller, J. Appl. Phys. 109(10), 104315 (2011)

    ADS  Google Scholar 

  31. A. Deka, P. Barman, M. Mukhopadhyay, S. Bhattacharyya, Surf. Interfaces. 25, 101242 (2021)

    Google Scholar 

  32. Z.Q. Zou, L.M. Sun, G.M. Shi, X.Y. Liu, X. Li, Nanoscale Res. Lett. 8(1), 1–6 (2013)

    ADS  Google Scholar 

  33. R.M. Bradley, Phys. Rev. B 83(19), 195410 (2011)

    ADS  Google Scholar 

  34. R.M. Bradley, J. Appl. Phys. 119(13), 134305 (2016)

    ADS  Google Scholar 

Download references

Acknowledgements

Thankful to UGC-DAE CSR Indore for providing DC ion beam sputtering, AFM facilities and Dr. S. Balaji, IGCAR, Kalpakkam, India, for RBS measurements. Thankful to Dr. S. Pathak, UPES for helping us in preparing some of the graphics.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Dr. Kumar Navin and Prof. Sarathlal Koyiloth Vayalil. Prof. Ajay Gupta contributed in data analysis and the interpretation of data. The first draft of the manuscript was written by Kumar Navin and all authors commented and contributed on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Sarathlal Koyiloth Vayalil.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Navin, K., Gupta, A. & Koyiloth Vayalil, S. Molybdenum assisted self-organized pattern formation by low energy ion beam sputtering. Appl. Phys. A 130, 316 (2024). https://doi.org/10.1007/s00339-024-07466-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-024-07466-y

Keywords

Navigation