Skip to main content
Log in

Structural, spectral and nonlinear optical analysis of cytosinium dihydrogen phosphite crystal

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Cytosinium dihydrogen phosphite (CDHP), a semiorganic crystal has been grown by slowly evaporating the solvent. It crystallizes in triclinic system with non-centrosymmetric space group P1. Optical transmittance study of CDHP shows its transmitting ability from 277 to 1100 nm. Fourier Transform Infrared and Raman spectral analysis establishes the vibrations of functional groups present in CDHP. Presence of H2PO3 ion’s characteristic vibrations ensures the formation of CDHP crystal. Nuclear Magnetic Resonance (NMR) spectral analysis elucidates the proton and carbon environment and the molecular structure of CDHP has been confirmed. Second harmonic generation (SHG) efficiency has been measured using Kurtz and Perry powder method. SHG efficiency of CDHP is 0.88 times that of KDP. Photoluminescence emission spectrum suggests suitability of CDHP crystal to design UV fluorescence detection, UV filter and optoelectronic devices. The third order nonlinear optical (NLO) parameters have been analysed by Z-scan technique which reveals the self-defocusing and saturable absorption nature of CDHP. The third order NLO susceptibility (χ3) is determined as 1.0633 \(\times\) 10–7 esu. Presence of N–H…O and O–H…O hydrogen bonds in CDHP crystal is the reason for this high χ3 value. The results reveals that the crystal can be used in laser Q-switching, optical sensors and optoelectronic applications. Thermal stability of CDHP is analysed by thermogravimetric and differential thermal analysis (TG/DTA).

Highlights

  • Single crystal of CDHP were grown from solution growth technique.

  • CDHP has high optical transmittance and can be used for optoelectronic and harmonic generation applications.

  • Vibrational analysis ensures the existence of H2PO3− anion.

  • Molecular structure of CDHP was confirmed by NMR analysis.

  • CDHP shows better SHG efficiency.

  • Z scan analysis reveals CDHP to be a perfect material for designing optical sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig  3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

Data will be made available on request.

References

  1. K. Saranya, E. Muhildharani, C.R. Raja, Growth, structural confirmation and the effect of hydrogen bond on the third-order nonlinear optical properties of diisopropylammonium 4-aminobenzenesulfonate crystal. J. Mater. Sci. Mater. Electron. 661, 01–10 (2023)

    Google Scholar 

  2. A.N. Vigneshwaran, P. Paramasivam, C.R. Raja, A study on the linear and nonlinear optical properties of Li and NH4 doped potassium pentaborate crystals. Mater. Lett. 178, 100–103 (2016)

    Article  Google Scholar 

  3. A.N. Vigneshwaran, P. Umarani, C.R. Raja, Studies on nonlinear optical ammonium pentaborate crystals. J. Mater. Sci. Mater. Electron. 28, 11430–11438 (2017)

    Article  Google Scholar 

  4. M.J. Cho, D.H. Choi, P.A. Sullivan, A.J.P. Akelaitis, L.R. Dalton, Recent progress in second-order nonlinear optical polymers and dendrimers. Prog. Poly. Sci. 33, 1013–1058 (2008)

    Article  Google Scholar 

  5. A.N. Vigneshwaran, S. Kalainathan, C.R. Raja, Effect of Li and NH4 doping on the crystal perfection, second harmonic generation efficiency and laser damage threshold of potassium pentaborate crystals. Opt. Las. Technol 100, 153–156 (2018)

    Article  ADS  Google Scholar 

  6. R. Aarthi, C.R. Raja, Confirmation of supramolecular structure and its impact on nonlinear optical properties of Bis(4-methylbenzylammonium) tetrabromido zincate: a new semiorganic crystal. J. Mol. Struct. 1189, 338–342 (2019)

    Article  ADS  Google Scholar 

  7. V. Balachandran, K. Parimala, Molecular structures, FT-IR and FT-Raman spectra, NBO analysis, NLO properties, reactive sites and quantum chemical calculations of keto-enol tautomerism (2-amino-4-pyrimidinol) and (2-amino-pyrimidine-4(1H)-one), Spectrochimica Acta Part A: Mol. Biomol. Spectrosc. 102, 30–51 (2013)

    Article  Google Scholar 

  8. D.L. Barker, R.E. Marsh, The crystal structure of cytosine. Acta Cryst. 17, 1581–1587 (1964)

    Article  Google Scholar 

  9. K. Bochouit, N. Benali-Cherif, S. Dahaoui, E.-E. Bendeif, C. Lecomte, Cytosinium oxalate monohydrate. Acta Cryst. E 61, o2755–o2757 (2005)

    Article  Google Scholar 

  10. A. Cherouana, K. Bouchouit, L. Benjeddou, N. Benali-Cherif, Cytosinium nitrate. Acta Cryst. E 59, o983–o985 (2003)

    Article  Google Scholar 

  11. R. Takoachet, R. Benali-Cherif, N. Benali-Cherif, Cytosinium hydrogen selenite. Acta Cryst. E 70, o186–o187 (2014)

    Article  Google Scholar 

  12. P. Jaikumar, T.V. Sundar, N. Sharmila, T. Balakrishnan, K. Ramamurthi, Hydrogen- bonding patterns in bis (cytosinium) tartarate monohydrate. IUCR Data 2, x170448 (2017)

    Article  Google Scholar 

  13. P. Jaikumar, S. Sathishkumar, T. Balakrishnan, K. Ramamurthi, Growth, structural, optical, thermal and mechanical properties of cytosinium hydrogen selenite: a novel nonlinear optical single crystal. Mater. Res. Bull. 78, 96–102 (2016)

    Article  Google Scholar 

  14. P. Jaikumar, T. Balakrishnan, M.S. MohammedJaabir, S. Sakthivel, Investigations on the growth, structural, optical, mechanical and cytotoxicity properties of a semiorganic single crystal: cytosinium nitrate. IJCRR 09, 08–14 (2017)

    Google Scholar 

  15. P. Jaikumar, T. Balakrishnan, C. Indhumathi, T.C. Sabari Grisun, K. Ramamurthi, Nonlinear optical behaviour of bis (cytosinium) tartarate monohydrate single crystal. Chem. Phys. Imp. 5, 01–10 (2022)

    Google Scholar 

  16. A. Messai, N. Benali-Cherif, E. Jeanneau, D. Luneau, Hydrogen bonding in cytosinium dihydrogen phosphite. Acta Cryst. E 65, o1147–o1148 (2009)

    Article  Google Scholar 

  17. G. Saravanakumar, G. Manobalaji, P. Murugakoothan, Experimental and theoretical investiations on N, N’-diphenylguanidinium dihydrogen phosphite—a semi-organic nonlinear optical material. Spectrochim. Acta Part A Mol. Biomol. Spectrosc.. Acta Part A Mol. Biomol. Spectrosc. 138, 340–347 (2015)

    Article  ADS  Google Scholar 

  18. R. Aarthi, C.R. Raja, Spectral and optical characterization of the new semi-organic crystal: 4-methylbenzylammonium chloride hemihydrate, to establish protonation and the effect of resultant hydrogen bonding. Bull. Mater. Sci. 209, 01–06 (2019)

    Google Scholar 

  19. S.E. AllenMoses, S.M. Ravi Kumar, T. Ashok Hegde, Crystal engineering and physicochemical properties of L-threoninium succinate (LTS) single crystal for frequency conversion applications. J. Mater. Sci. Mater. Electron. 31, 21097–21107 (2020)

    Article  Google Scholar 

  20. P. Jayaprakash, M. Peer Mohammed, M. Lydia Caroline, Growth, spectral and optical characterization of a novel nonlinear optical organic material: D-Alanine DL -Mandelic acid single crystal. J. Mol. Struct. 1134, 67–77 (2016)

    Article  ADS  Google Scholar 

  21. S. Shanmugan, N. Saravanan, V. Chitambaram, B. Deepanraj, G. Palani, Investigation on single crystal by tartaric acid-barium chloride: Growth and characterization of novel NLO materials. Bull. Mater. Sci. 202, 01–08 (2020)

    Google Scholar 

  22. Pu. Tu Lee, Yun, Wang, Screening, manufacturing, photoluminescence and molecular recognition of co-crystals: Cytosine with dicarboxylic acids. Cryst. Growth Des. 10, 1419–1434 (2010)

    Article  Google Scholar 

  23. S. Kalyanaraman, V. Krishnakumar, K. Ganesan, Vibrational spectroscopic analysis of cytosine monohydrate and its copper(II) complex. Spectrochim. Acta Part A 66, 1340–1346 (2007)

    Article  ADS  Google Scholar 

  24. D. Krilov, K. Sankovic, Hydrogen bonding in single crystals of cytosine monohydrate studied by Raman spectroscopy. J. Spectrosc. Dyn. 4, 01–06 (2014)

    Google Scholar 

  25. S. Shanmuga Sundari, P. Kanchana, N. Arunadevi, C. Shobana, Growth, structural, dielectric and optical characteristics of glycine phosphite single crystal. Mater. Today Proc. 33, 2203–2208 (2020)

    Article  Google Scholar 

  26. M. Fleck, V.V. Ghazaryan, A.M. Petrosyan, Growth and characterization of L-Prolinium phosphite. J. Mol. Struct. 1079, 460–464 (2015)

    Article  ADS  Google Scholar 

  27. R. Perumal, K. Senthil Kumar, S. Moorthy Babu, G. Bhavannarayana, Optical characterization of ferroelectric glycinium phosphite single crystals. J. Alloys. Compounds 490, 342–349 (2010)

    Article  Google Scholar 

  28. V.V. Ghazaryan, B.A. Zakharov, A.M. Petrosyan, E.V. Boldyreva, L-Argininium phosphite—a new candidate for NLO materials. Acta Cryst C 71, 415–421 (2015)

    Article  Google Scholar 

  29. https://sdbs.db.aist.go.jp/sdbs/cgi-bin/direct_frame_top.cgi.

  30. B.A.S. Van Mooy, Synthesis of high molar activity 33P-labeled phosphorous acid. J. Rad. Analy. Nuc. Chem. 320, 885–888 (2019)

    Article  Google Scholar 

  31. S.K. Kurtz, T.T. Perry, A powder technique for the evaluation of nonlinear optical materials. J. Appl. Phys. 39, 3798–3813 (1968)

    Article  ADS  Google Scholar 

  32. N. Mahendran, S. Johnson Jeyakumar, M. Jothibas, M. Ponnar, A. Muthuvel, Synthesis, characterization of undoped and copper-doped hafnium oxide nanoparticles by sol–gel method. J. Mater. Sci. Mater. Electron. 33, 10439–10449 (2022)

    Article  Google Scholar 

  33. S. JohnsonJeyakumar, J. Vasudevan, B. Arunkumar, M. Jothibas, A. Rajeswari, R. Sathiskumar, A. Muthuvel, Structural, optical and magnetic behavior of Sn doped ZnO nanoparticles prepared by solid state method. Mater. Today Proc. 48, 371–376 (2022)

    Article  Google Scholar 

  34. A. Venkatesan, A. Muthuvel, V. Mohana, N. Mahendran et al., Synthesis, characterization and magnetic properties of Mg2+ doped green pigment cobalt aluminate nanoparticles. J. Mater. Sci. Mater. Electron. 33, 21246–21257 (2022)

    Article  Google Scholar 

  35. M. Suriya, M. Manimaran, B. Milton Boaz, K. Sakthi Murugasen, Investigation on the optical, spectrl, electrical, mechanical and laser damage threshold studies of bis (4-acetylanilinum) tetrachloridozincate (B4ATCZ) crystal. J. Mater. Sci. Mater. Electron. 32, 11393–11417 (2021)

    Article  Google Scholar 

  36. M. Sheik-Bahae, A.A. Said, T.H. Wei, D.J. Hagan, E.W. Van Stryland, Sensitive measurement of optical nonlinearities using a single beam. IEEE J. Quantum Electron. 26, 760–769 (1990)

    Article  ADS  Google Scholar 

  37. R. Aarthi, C.R. Raja, Probing the structure-property relationship of a new semiorganic nonlinear optical crystal: catena-poly [bis(4-methylbenzylammonium)[[dibromidocadmate(׀׀)]-di-׀-bromido]]. J. Mater. Sci. Mater. Electron. 30, 8698–8704 (2019)

    Article  Google Scholar 

  38. M. Anis, M.I. Baig, S.S. Hussaini, M.D. Shirsat, M. Shkir, H.A. Ghramh, Linear and nonlinear optical analysis on semiorganic L-Proline cadmium chloride single crystal. Chin. Phys. B 27, 01–07 (2018)

    Article  Google Scholar 

  39. J. Mohana, G. Ahila, M. DivyaBharathi, G. Anbalagan, Growth, spectral, optical, thermal and mechanical behaviour of an organic single crystal: quinolinium 2-carboxy 6-nitrophthalate monohydrate. J. Cryst. GrowthCryst. Growth 450, 181–189 (2016)

    Article  ADS  Google Scholar 

  40. M. Krishna Kumar, S. Sudhahar, P. Pandi, G. Bhagavanarayan, R. Mohan Kumar, Studies of the structural and third-order nonlinear optical properties of solution grown 4-hydroxy-3-methoxy-4’-N’-methylstilbazolium tosylate monohydrate crystals. Opt. Mater. 36, 988–995 (2014)

    Article  ADS  Google Scholar 

  41. D. Wang, T. Li, S. Wang, Z. Wang, Z. Wang, X. Xu, F. Zhang, Study on nonlinear refractive properties of KDP and DKDP crystals. RSC Adv. 06, 14490–14495 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank Sophisticated Analytical Instrument Facility SAIF, Indian Institute of Technology, Chennai for providing single crystal XRD and FT-Raman, Instrumentation centre, St.Joseph’s college, Trichy for recording UV-Vis-NIR and FTIR spectra and Gandhigram Rural Institute (Deemed to be University) for recording NMR spectrum and TG-DTA analysis. The authors thank Alagappa university, Karikudi for PXRD and PL analysis The authors are grateful to B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai for providing SHG measurement. The authors also express their special gratitude to Dr. D. Sastikumar, NIT, Trichy for providing Z-scan testing facility.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the literature survey, material preparation, characterization and interpretation. The first draft of the manuscript was well discussed by all and written by EM. All authors read and approved the final manuscript.

Corresponding author

Correspondence to C. Ramachandra Raja.

Ethics declarations

Conflict of interest

We wish to confirm that there are no conflicts of interest associated with this publication and there has been no significant financial support for this work that could have influenced its outcome.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muhildharani, E., Saranya, K. & Raja, C.R. Structural, spectral and nonlinear optical analysis of cytosinium dihydrogen phosphite crystal. Appl. Phys. A 130, 253 (2024). https://doi.org/10.1007/s00339-024-07432-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-024-07432-8

Keywords

Navigation