Skip to main content
Log in

Structural, cation distribution, mechanical, and optical properties of rare-earth doped cadmium zinc ferrites

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The structural, mechanical, optical, and magnetic properties of RE3+ (Nd3+and Sm3+) doped cadmium zinc ferrites were investigated. The purpose of the rare-earth dopants is to deduce the possible applications for the prepared samples. The Cd0.5Zn0.5RExFe2-xO4 ferrite (x = 0.00, 0.01, 0.08) was synthesized using the wet chemical co-precipitation method. The structural investigations were done using X-ray diffraction (XRD) fitted using Rietveld refinement. The analysis confirmed the spinel structure's crystallinity belonging to the Fd3m space group. The cation distribution and many other structural parameters were estimated from the XRD data. Cation distribution calculations were done using a custom-built Python program that proved the normal structure of the prepared ferrites. The mechanical properties were calculated using the data extracted from Fourier transform infrared (FTIR) spectra, which showed an increase in porosity, weakening of elastic moduli, increase in ionic distances, and expansion of the unit cell. The optical properties were studied using Photoluminescence (PL) spectroscopy and Ultraviolet–Visible (UV–Vis) spectroscopy, which allowed the evaluation of the energy gaps that are found to range between 3.24 and 3.27 eV for the direct energy gap. The results confirmed the quantum confinement effect due to the decrease of crystallite size with the increase of the energy band gap. Optical analysis also showed that the prepared ferrites are good candidates for optoelectronics and nonlinear optical applications. Mössbauer spectroscopy and vibrating sample magnetometer (VSM) investigate the magnetic and structural properties that verified the superparamagnetic behavior in all samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. A. Mulyawan, S.H. Dewi, Yunasfi, D.S. Winatapura, Mashadi, W.A. Adi, The effects of lanthanum ions substitution on properties and effective absorption bandwidth (EAB) of zinc ferrite. J. Solid State Chem. 327, 124275 (2023). https://doi.org/10.1016/j.jssc.2023.124275

    Article  Google Scholar 

  2. J. Liu, Y. Lu, R. Wang, Z. Xu, X. Li, The effect of calcination temperature on combustion preparation of ZnFe2O4 as anode for lithium batteries. Int. J. Electrochem. Sci. 15, 1571–1580 (2020). https://doi.org/10.20964/2020.02.43

    Article  Google Scholar 

  3. M.M. Vadiyar, S.C. Bhise, S.K. Patil, S.A. Patil, D.K. Pawar, A.V. Ghule, P.S. Patil, S.S. Kolekar, Mechanochemical growth of a porous ZnFe2O4 nano-flake thin film as an electrode for supercapacitor application. RSC Adv. 5, 45935–45942 (2015). https://doi.org/10.1039/C5RA07588B

    Article  ADS  Google Scholar 

  4. S. Latif, A. Liaqat, M. Imran, A. Javaid, N. Hussain, T. Jesionowski, M. Bilal, Development of zinc ferrite nanoparticles with enhanced photocatalytic performance for remediation of environmentally toxic pharmaceutical waste diclofenac sodium from wastewater. Environ. Res. 216, 114500 (2023). https://doi.org/10.1016/j.envres.2022.114500

    Article  Google Scholar 

  5. D. Thakur, M. Latwal, J.P. Singh, L.K. Gupta, R.C. Srivastava, 9-Zinc ferrite nanoparticles and their biomedical applications, in Oxides for medical applications. ed. by P. Kumar, G. Kandasamy, J.P. Singh, P.K. Maurya (Woodhead Publishing, 2023), pp.233–255. https://doi.org/10.1016/B978-0-323-90538-1.00014-5

    Chapter  Google Scholar 

  6. A.R. Al-Areqi, X. Yu, R. Yang, C. Wang, C. Wu, W. Zhang, Synthesis of zinc ferrite particles with high saturation magnetization for magnetic induction hyperthermia. J. Magn. Magn. Mater. 579, 170839 (2023). https://doi.org/10.1016/j.jmmm.2023.170839

    Article  Google Scholar 

  7. T. Ravikumar, L. Thirumalaisamy, S. Madanagurusamy, K. Sivaperuman, Substrate temperature dependent ammonia gas sensing performance of zinc ferrite thin films prepared by spray pyrolysis technique. J. Alloy. Compd. 959, 170568 (2023). https://doi.org/10.1016/j.jallcom.2023.170568

    Article  Google Scholar 

  8. K. Wu, J. Li, C. Zhang, Zinc ferrite based gas sensors: A review. Ceram. Int. 45, 11143–11157 (2019). https://doi.org/10.1016/j.ceramint.2019.03.086

    Article  Google Scholar 

  9. M. Hajlaoui, S. Gharbi, E. Dhahri, K. Khirouni, Impedance spectroscopy and giant permittivity study of Zn Fe 2 O 4 spinel ferrite as a function of frequency and temperature. J. Alloy. Compd. 906, 164361 (2022). https://doi.org/10.1016/j.jallcom.2022.164361

    Article  Google Scholar 

  10. M.R. Ansari, A. Kem, P. Agrohi, P.K. Mallick, P. Rao, K.R. Peta, Structural, optical, magnetic and anti-bacterial properties of green synthesized spinel zinc ferrite by microwave-assisted method. Mater. Chem. Phys. 301, 127641 (2023). https://doi.org/10.1016/j.matchemphys.2023.127641

    Article  Google Scholar 

  11. F. Hcini, S. Hcini, B. Alzahrani, S. Zemni, M.L. Bouazizi, Effect of Cr substitution on structural, magnetic and impedance spectroscopic properties of Cd0.5Zn0.5Fe2−xCrxO4 ferrites. Appl. Phys. A 126, 362 (2020). https://doi.org/10.1007/s00339-020-03544-z

    Article  ADS  Google Scholar 

  12. B.P. Jacob, S. Thankachan, S. Xavier, E.M. Mohammed, Effect of Gd3+ doping on the structural and magnetic properties of nanocrystalline Ni–Cd mixed ferrite. Phys. Scr. 84, 045702 (2011). https://doi.org/10.1088/0031-8949/84/04/045702

    Article  ADS  Google Scholar 

  13. M.H. Badr, N.V. Kudrevatykh, M.A. Hassan, M. Moustafa, Y.S. Rammah, A.S. Abouhaswa, A.A. EL-Hamalawy, Structural and magnetic analysis of Cd-Zn spinel ferrite nanoparticles. Phys. Scr. 98, 025823 (2023). https://doi.org/10.1088/1402-4896/acb409

    Article  ADS  Google Scholar 

  14. R.M. Shedam, A.M. Bagwan, S.N. Mathad, A.B. Gadkari, M.R. Shedam, R.G. Sonkawade, Nd3+ added Mg– Cd ferrite material study the thick film gas sensing properties. Mater. Chem. Phys. 293, 126871 (2023). https://doi.org/10.1016/j.matchemphys.2022.126871

    Article  Google Scholar 

  15. K. Elayakumar, A. Dinesh, A. Manikandan, M. Palanivelu, G. Kavitha, S. Prakash, R. Thilak Kumar, S.K. Jaganathan, A. Baykal, Structural, morphological, enhanced magnetic properties and antibacterial bio-medical activity of rare earth element (REE) cerium (Ce3+) doped CoFe2O4 nanoparticles. J. Magn. Magn. Mater. 476, 157–165 (2019). https://doi.org/10.1016/j.jmmm.2018.09.089

    Article  ADS  Google Scholar 

  16. S. Li, J. Pan, F. Gao, D. Zeng, F. Qin, C. He, G. Dodbiba, Y. Wei, T. Fujita, Structure and magnetic properties of coprecipitated nickel-zinc ferrite-doped rare earth elements of Sc. Dy, and Gd, J Mater Sci: Mater Electron 32, 13511–13526 (2021). https://doi.org/10.1007/s10854-021-05928-0

    Article  Google Scholar 

  17. N. Rezlescu, E. Rezlescu, C. Pasnicu, M.L. Craus, Effects of the rare-earth ions on some properties of a nickel-zinc ferrite. J. Phys. Condens. Matter 6, 5707 (1994). https://doi.org/10.1088/0953-8984/6/29/013

    Article  ADS  Google Scholar 

  18. P.P. Naik, S.S. Hasolkar, M.M. Kothawale, S.H.P. Keluskar, Altering saturation magnetization of manganese zinc ferrite nanoparticles by doping with rare earth Nd+3 ions. Physica B 584, 412111 (2020). https://doi.org/10.1016/j.physb.2020.412111

    Article  Google Scholar 

  19. C. Mang, Z. Ma, J. Luo, M. Rao, X. Zhang, Z. Peng, Electromagnetic wave absorption properties of cobalt-zinc ferrite nanoparticles doped with rare earth elements. J. Rare Earths 39, 1415–1426 (2021). https://doi.org/10.1016/j.jre.2020.08.011

    Article  Google Scholar 

  20. S. Taneja, P. Thakur, R. Kumar, S. Hemalatha, Y. Slimani, B. Ravelo, A. Thakur, Nanostructured rare earth Nd3+doped Nickel–Zinc–Bismuth spinel ferrites: structural, electrical and dielectric studies. Ceram. Int. 48, 27731–27738 (2022). https://doi.org/10.1016/j.ceramint.2022.06.073

    Article  Google Scholar 

  21. R. Jasrotia, N. Kumari, R. Verma, Suman, S.K. Godara, J. Ahmed, S.M. Alshehri, B. Pandit, S. Kumar, Himanshi, S. Sharma, S. Kirti, P.K. Maji, Effect of rare earth (Nd3+) metal doping on structural, morphological, optical and magnetic traits of Zn–Mg nano-ferrites. J. Rare Earths 41, 1763–1770 (2023). https://doi.org/10.1016/j.jre.2022.08.015

    Article  Google Scholar 

  22. M. Lenglet, B. Lefez, Infrared optical properties of cobalt (II) spinels. Solid State Commun. 98, 689–694 (1996). https://doi.org/10.1016/0038-1098(96)00109-3

    Article  ADS  Google Scholar 

  23. R. Yassine, A.M. Abdallah, R. Sayed Hassan, N. Yaacoub, R. Awad, Z. Bitar, Physical properties of nanosized (x)NiO/(1–x)CdFe2O4 composites. Ceram. Int. 48, 14825–14838 (2022). https://doi.org/10.1016/j.ceramint.2022.02.019

    Article  Google Scholar 

  24. P.S. Sidhu, R.J. Gilkes, R.M. Cornell, A.M. Posner, J.P. Quirk, Dissolution of iron oxides and oxyhydroxides in hydrochloric and perchloric acids. Clays Clay Miner. 29, 269–276 (1981). https://doi.org/10.1346/CCMN.1981.0290404

    Article  ADS  Google Scholar 

  25. Z.-Y. Lu, D.M. Muir, Dissolution of metal ferrites and iron oxides by HCl under oxidising and reducing conditions. Hydrometallurgy 21, 9–21 (1988). https://doi.org/10.1016/0304-386X(88)90013-8

    Article  Google Scholar 

  26. M.A. Islam, A.K.M.A. Hossain, M.Z. Ahsan, Ma.A. Bally, M.S. Ullah, S.M. Hoque, F.A. Khan, Structural characteristics, cation distribution, and elastic properties of Cr3+ substituted stoichiometric and non-stoichiometric cobalt ferrites. RSC Adv. 12, 8502–8519 (2022). https://doi.org/10.1039/D1RA09090A

    Article  ADS  Google Scholar 

  27. S. Debnath, A. Das, R. Das, Effect of cobalt doping on structural parameters, cation distribution and magnetic properties of nickel ferrite nanocrystals. Ceram. Int. 47, 16467–16482 (2021). https://doi.org/10.1016/j.ceramint.2021.02.095

    Article  Google Scholar 

  28. S. Thota, S.C. Kashyap, S.K. Sharma, V.R. Reddy, Cation distribution in Ni-substituted Mn0.5Zn0.5Fe2O4 nanoparticles: a Raman, Mössbauer, X-ray diffraction and electron spectroscopy study. Mater. Sci. Eng. B 206, 69–78 (2016). https://doi.org/10.1016/j.mseb.2016.01.002

    Article  Google Scholar 

  29. S.M. Patange, S.E. Shirsath, S.S. Jadhav, K.M. Jadhav, Cation distribution study of nanocrystalline NiFe2−xCrxO4 ferrite by XRD, magnetization and Mössbauer spectroscopy. Physica Status Solidi (a) 209, 347–352 (2012). https://doi.org/10.1002/pssa.201127232

    Article  ADS  Google Scholar 

  30. B.D. Cullity, Elements of X-ray Diffraction (Addison-Wesley Publishing, 1956)

    Google Scholar 

  31. Z. Su, P. Coppens, Relativistic X-ray elastic scattering factors for neutral atoms Z = 1–54 from multiconfiguration Dirac-Fock Wavefunctions in the 0–12Å−1 sinθ /λ range, and six-Gaussian analytical expressions in the 0–6Å−1 range. Acta Cryst A 53, 749–762 (1997). https://doi.org/10.1107/S0108767397004558

    Article  Google Scholar 

  32. P.J. Brown, A.G. Fox, E.N. Maslen, M.A. O’Keefe, B.T.M. Willis, Intensity of diffracted intensities, in International Tables for Crystallography, 1st edn., ed. by E. Prince (International Union of Crystallography, Chester, 2006), pp.554–595. https://doi.org/10.1107/97809553602060000600

    Chapter  Google Scholar 

  33. K.A.M. Khalaf, A.D. Al Rawas, A.M. Gismelssed, A. Al Jamel, S.K.J. Al Ani, M.S. Shongwe, K.O. Al Riyami, S.R. Al Alawi, Influence of Cr substitution on Debye-Waller factor and related structural parameters of ZnFe2-xCrxO4 spinels. J. Alloys Compd. 701, 474–486 (2017). https://doi.org/10.1016/j.jallcom.2017.01.083

    Article  Google Scholar 

  34. N.I. Abu-Elsaad, S.A. Mazen, A.Y. Sleem, Production of Cr3+ substituted Li–Zn nanocrystalline ferrite by citrate method: Studies on structure, cation occupancy, elastic, optical and magnetic performance. Ceram. Int. 48, 14210–14223 (2022). https://doi.org/10.1016/j.ceramint.2022.01.309

    Article  Google Scholar 

  35. P. Maltoni, S.A. Ivanov, G. Barucca, G. Varvaro, D. Peddis, R. Mathieu, Complex correlations between microstructure and magnetic behavior in SrFe12O19 hexaferrite nanoparticles. Sci. Rep. 11, 23307 (2021). https://doi.org/10.1038/s41598-021-02782-2

    Article  ADS  Google Scholar 

  36. M.A. Hakim, S.K. Nath, S.S. Sikder, K. Hanium Maria, Cation distribution and electromagnetic properties of spinel type Ni–Cd ferrites. J. Phys. Chem. Solids 74, 1316–1321 (2013). https://doi.org/10.1016/j.jpcs.2013.04.011

    Article  ADS  Google Scholar 

  37. M.S.U. Amin, Z. Hasan, Z. Majeed, M.A. Latif, K. un Nabi, A. Mahmood, K. Ali, M. Mehmood, M. Fatima, M.I. Akhtar, A. Arshad, M.Z. Bibi, F. Iqbal, N.B. Jabeen, Structural, electrical, optical and dielectric properties of yttrium substituted cadmium ferrites prepared by Co-Precipitation method. Ceram. Int. 46, 20798–20809 (2020). https://doi.org/10.1016/j.ceramint.2020.05.079

    Article  Google Scholar 

  38. K.M. Batoo, G. Kumar, Y. Yang, Y. Al-Douri, M. Singh, R.B. Jotania, A. Imran, Structural, morphological and electrical properties of Cd2+doped MgFe2-xO4 ferrite nanoparticles. J. Alloy. Compd. 726, 179–186 (2017). https://doi.org/10.1016/j.jallcom.2017.07.237

    Article  Google Scholar 

  39. R.H. Kadam, R. Shitole, S.B. Kadam, K. Desai, A.P. Birajdar, V.K. Barote, K.M. Batoo, S. Hussain, S.E. Shirsath, A thorough investigation of rare-earth Dy3+ substituted cobalt-chromium ferrite and its magnetoelectric nanocomposite. Nanomaterials (Basel) 13, 1165 (2023). https://doi.org/10.3390/nano13071165

    Article  Google Scholar 

  40. K.A.M. Khalaf, A.D. Al-Rawas, H.M. Widatallah, K.S. Al-Rashdi, A. Sellai, A.M. Gismelseed, M. Hashim, S.K. Jameel, M.S. Al-Ruqeishi, K.O. Al-Riyami, M. Shongwe, A.H. Al-Rajhi, Influence of Zn2+ ions on the structural and electrical properties of Mg1−xZnxFeCrO4 spinels. J. Alloy. Compd. 657, 733–747 (2016). https://doi.org/10.1016/j.jallcom.2015.10.157

    Article  Google Scholar 

  41. M.A. Ahmed, S.F. Mansour, M. Afifi, Structural and electrical properties of nanometric Ni–Cu ferrites synthesized by citrate precursor method. J. Magn. Magn. Mater. 324, 4–10 (2012). https://doi.org/10.1016/j.jmmm.2011.07.010

    Article  ADS  Google Scholar 

  42. M.R. Anantharaman, S. Jagatheesan, K.A. Malini, S. Sindhu, A. Narayanasamy, C.N. Chinnasamy, J.P. Jacobs, S. Reijne, K. Seshan, R.H.H. Smits, H.H. Brongersma, On the magnetic properties of ultra-fine zinc ferrites. J. Magn. Magn. Mater. 189, 83–88 (1998). https://doi.org/10.1016/S0304-8853(98)00171-1

    Article  ADS  Google Scholar 

  43. K.J. Standley, Oxide magnetic materials, 2nd edn. (Clarendon Press, Oxford, 1972)

    Google Scholar 

  44. V.G. Patil, S.E. Shirsath, S.D. More, S.J. Shukla, K.M. Jadhav, Effect of zinc substitution on structural and elastic properties of cobalt ferrite. J. Alloy. Compd. 488, 199–203 (2009). https://doi.org/10.1016/j.jallcom.2009.08.078

    Article  Google Scholar 

  45. M.R. Patil, M.K. Rendale, S.N. Mathad, R.B. Pujar, FTIR spectra and elastic properties of Cd-substituted Ni–Zn ferrites. Int. J Self-Propag. High-Temp. Synth. 26, 33–39 (2017). https://doi.org/10.3103/S1061386217010083

    Article  Google Scholar 

  46. R.D. Waldron, Infrared spectra of ferrites. Phys. Rev. 99, 1727–1735 (1955). https://doi.org/10.1103/PhysRev.99.1727

    Article  ADS  Google Scholar 

  47. B. Rajesh Babu, T. Tatarchuk, Elastic properties and antistructural modeling for Nickel-Zinc ferrite-aluminates. Mater. Chem. Phys. 207, 534–541 (2018). https://doi.org/10.1016/j.matchemphys.2017.12.084

    Article  Google Scholar 

  48. M.M.N. Ansari, S. Khan, N. Ahmad, Influence of Dy3+ and Cu substitution on the structural, electrical and dielectric properties of CoFe2O4 nanoferrites. J. Mater. Sci. Mater. Electron. 30, 17630–17642 (2019). https://doi.org/10.1007/s10854-019-02112-3

    Article  Google Scholar 

  49. N.-H. Khan, Z.A. Gilani, M. Khalid, H.M.N. ul, H. Khan Asghar, G. Hussain, M.A. Shar, S.M. Ali, M.A. Khan, F.A. Sheikh, A. Alhazaa, Impact of cerium substitution cobalt–zinc spinel ferrites for the applications of high frequency devices. Phys. B Condens. Matter 660, 414873 (2023). https://doi.org/10.1016/j.physb.2023.414873

    Article  Google Scholar 

  50. M. Ismail, N. Jaber, Structural and elastic properties of nickel–zinc ferrite nano-particles doped with lithium. J. Brazil. Soc. Mech. Sci. Eng. (2018). https://doi.org/10.1007/s40430-018-1164-y

    Article  Google Scholar 

  51. M. Deepty, Ch. Srinivas, E.R. Kumar, N.K. Mohan, C.L. Prajapat, T.V.C. Rao, S.S. Meena, A.K. Verma, D.L. Sastry, XRD, EDX, FTIR and ESR spectroscopic studies of co-precipitated Mn–substituted Zn–ferrite nanoparticles. Ceram. Int. 45, 8037–8044 (2019). https://doi.org/10.1016/j.ceramint.2019.01.029

    Article  Google Scholar 

  52. B.D. Prasad, H. Nagabhushana, K. Thyagarajan, S.C. Sharma, C. Shivakumara, N.O. Gopal, B.M. Nagabhushana, S.-C. Ke, R.P.S. Chakradhar, K.R. Prabhakara, Incorporation of Cr3+ ions in tuning the magnetic and transport properties of nano zinc ferrite. J. Alloy. Compd. 657, 95–108 (2016). https://doi.org/10.1016/j.jallcom.2015.09.270

    Article  Google Scholar 

  53. R.A. Pawar, S.M. Patange, Q.Y. Tamboli, V. Ramanathan, S.E. Shirsath, Spectroscopic, elastic and dielectric properties of Ho3+ substituted Co-Zn ferrites synthesized by sol-gel method. Ceram. Int. 42, 16096–16102 (2016). https://doi.org/10.1016/j.ceramint.2016.07.122

    Article  Google Scholar 

  54. J. Al Boukhari, A. Khalaf, R. Sayed Hassan, R. Awad, Structural, optical and magnetic properties of pure and rare earth-doped NiO nanoparticles. Appl. Phys. A 126, 323 (2020). https://doi.org/10.1007/s00339-020-03508-3

    Article  ADS  Google Scholar 

  55. M. Yousaf, A. Noor, S. Xu, M.N. Akhtar, B. Wang, Magnetic characteristics and optical band alignments of rare earth (Sm+3, Nd+3) doped garnet ferrite nanoparticles (NPs). Ceram. Int. 46, 16524–16532 (2020). https://doi.org/10.1016/j.ceramint.2020.03.219

    Article  Google Scholar 

  56. T.S. Moss, A relationship between the refractive index and the infra-red threshold of sensitivity for photoconductors. Proc. Phys. Soc. B 63, 167 (1950). https://doi.org/10.1088/0370-1301/63/3/302

    Article  ADS  Google Scholar 

  57. P. Hervé, L.K.J. Vandamme, General relation between refractive index and energy gap in semiconductors. Infrared Phys. Technol. 35, 609–615 (1994). https://doi.org/10.1016/1350-4495(94)90026-4

    Article  ADS  Google Scholar 

  58. N.M. Ravindra, V.K. Srivastava, Variation of refractive index with energy gap in semiconductors, 19, 603–604 (1979) . https://doi.org/10.1016/0020-0891(79)90081-2.

  59. M. Anani, C. Mathieu, S. Lebid, Y. Amar, Z. Chama, H. Abid, Model for calculating the refractive index of a III–V semiconductor. Comput. Mater. Sci. 41, 570–575 (2008). https://doi.org/10.1016/j.commatsci.2007.05.023

    Article  Google Scholar 

  60. P.P. Bardapurkar, S.N. Dalvi, V.D. Joshi, P.S. Solanki, V.R. Rathod, N.A. Shah, N.P. Barde, Effect of silica matrix on structural and optical properties of cobalt ferrite nanoparticles. Results Surf. Interfaces 8, 100081 (2022). https://doi.org/10.1016/j.rsurfi.2022.100081

    Article  Google Scholar 

  61. S. Ramesh, L.N. Patro, B. Dhanalakshmi, B. Chandrasekhar, T.A. Babu, K.C.B. Naidu, B.P. Rao, Magnetic properties of Mn/Co substituted nano and bulk Ni–Zn ferrites: a comparative study. Mater. Chem. Phys. 306, 128055 (2023). https://doi.org/10.1016/j.matchemphys.2023.128055

    Article  Google Scholar 

  62. A.V. Humbe, S.B. Somvanshi, J.S. Kounsalye, A. Kumar, K.M. Jadhav, Influential trivalent ion (Cr3+) substitution in mixed Ni–Zn nanoferrites: Cation distribution, magnetic, Mossbauer, electric, and dielectric studies. Ceram. Int. 48, 34075–34083 (2022). https://doi.org/10.1016/j.ceramint.2022.08.164

    Article  Google Scholar 

  63. B. Sun, D. Ma, G. Bai, J. Lu, K. Yang, K. Wang, X. Xu, Y. Zhai, W. Quan, B. Han, Correlating the microstructure of Mn–Zn ferrite with magnetic noise for magnetic shield applications. Ceram. Int. 49, 11960–11967 (2023). https://doi.org/10.1016/j.ceramint.2022.12.045

    Article  Google Scholar 

  64. V. More, S. Kadam, S. Kadam, S. Wadgane, R. Kadam, S. Alone, Complete micro-structural analysis and elastic properties of Sm3+-Doped Ni-Mn-Zn mixed spinel ferrite nanoparticles. Macromol. Symp. 400, 2100115 (2021). https://doi.org/10.1002/masy.202100115

    Article  Google Scholar 

  65. L. Weil, F. Bertaut, L. Bochirol, Propriétés magnétiques et structure de la phase quadratique du ferrite de cuivre. J. Phys. Radium 11, 208–212 (1950). https://doi.org/10.1051/jphysrad:01950001105020800

    Article  Google Scholar 

  66. H. Furuhashi, M. Inagaki, S. Naka, Determination of cation distribution in spinels by X-ray diffraction method. J. Inorg. Nucl. Chem. 35, 3009–3014 (1973). https://doi.org/10.1016/0022-1902(73)80531-7

    Article  Google Scholar 

  67. S.M. Patange, S.E. Shirsath, G.S. Jangam, K.S. Lohar, S.S. Jadhav, K.M. Jadhav, Rietveld structure refinement, cation distribution and magnetic properties of Al3+ substituted NiFe2O4 nanoparticles. J. Appl. Phys. 109, 053909 (2011). https://doi.org/10.1063/1.3559266

    Article  ADS  Google Scholar 

  68. B.D. Cullity, Elements of X-Ray Diffraction, 2nd edn. (Addison–Wesley Publ Co, Reading, 1978)

    Google Scholar 

  69. T.A. Wani, G. Suresh, R. Masrour, K.M. Batoo, A. Rasool, A structural, morphological, optical and magnetic study of nickel-substituted zinc (Ni–Zn) ferrite nanoparticles synthesized via glycine assisted gel autocombustion synthesis route. Mater. Chem. Phys. 307, 128169 (2023). https://doi.org/10.1016/j.matchemphys.2023.128169

    Article  Google Scholar 

  70. T.T. Ahmed, I.Z. Rahman, M.A. Rahman, Study on the properties of the copper substituted NiZn ferrites. J. Mater. Process. Technol. 153–154, 797–803 (2004). https://doi.org/10.1016/j.jmatprotec.2004.04.188

    Article  Google Scholar 

  71. T. Groń, Influence of vacancies and mixed valence on the transport processes in solid solutions with the spinel structure. Philos. Mag. B 70, 121–132 (1994). https://doi.org/10.1080/01418639408240200

    Article  ADS  Google Scholar 

  72. R.J. Hill, J.R. Craig, G.V. Gibbs, Systematics of the spinel structure type. Phys. Chem. Miner. 4, 317–339 (1979). https://doi.org/10.1007/BF00307535

    Article  ADS  Google Scholar 

  73. T. Tatarchuk, A. Shyichuk, N. Danyliuk, Mu. Naushad, V. Kotsyubynsky, V. Boychuk, Cobalt ferrite as an electromagnetically boosted metal oxide hetero-Fenton catalyst for water treatment. Chemosphere 326, 138364 (2023). https://doi.org/10.1016/j.chemosphere.2023.138364

    Article  Google Scholar 

  74. T. Tatarchuk, M. Bououdina, W. Macyk, O. Shyichuk, N. Paliychuk, I. Yaremiy, B. Al-Najar, M. Pacia, Structural, Optical, and Magnetic Properties of Zn-Doped CoFe2O4 Nanoparticles. Nanoscale Res. Lett. (2017). https://doi.org/10.1186/s11671-017-1899-x

    Article  Google Scholar 

  75. A.S. Fawzi, A.D. Sheikh, V.L. Mathe, Structural, dielectric properties and AC conductivity of Ni(1–x)ZnxFe2O4 spinel ferrites. J. Alloy. Compd. 502, 231–237 (2010). https://doi.org/10.1016/j.jallcom.2010.04.152

    Article  Google Scholar 

  76. B. Daruka Prasad, H. Nagabhushana, K. Thyagarajan, B.M. Nagabhushana, D.M. Jnaneshwara, S.C. Sharma, C. Shivakumara, N.O. Gopal, S.-C. Ke, R.P.S. Chakradhar, Magnetic and dielectric interactions in nano zinc ferrite powder: prepared by self-sustainable propellant chemistry technique. J. Magn. Magn. Mater. 358–359, 132–141 (2014). https://doi.org/10.1016/j.jmmm.2014.01.021

    Article  ADS  Google Scholar 

  77. V.K. Lakhani, T.K. Pathak, N.H. Vasoya, K.B. Modi, Structural parameters and X-ray Debye temperature determination study on copper-ferrite-aluminates. Solid State Sci. 13, 539–547 (2011). https://doi.org/10.1016/j.solidstatesciences.2010.12.023

    Article  ADS  Google Scholar 

  78. X. Zhou, J. Wang, D. Yao, Effect of rare earth doping on magnetic and dielectric properties of NiZnMn ferrites. J. Alloy. Compd. 935, 167777 (2023). https://doi.org/10.1016/j.jallcom.2022.167777

    Article  Google Scholar 

  79. T. Anantha Kumar, S. Malathi, C.V. Mythili, M. Jeyachandran, Structural, morphological and optical properties of zinc oxide nanoparticles by polymer capping. IJCTR 11, 48–57 (2018). https://doi.org/10.20902/IJCTR.2018.110805

    Article  Google Scholar 

  80. R. Rani, P. Dhiman, S.K. Sharma, M. Singh, Structural and magnetic studies of Co0.6Zn0.4Fe2O4 nanoferrite synthesized by solution combustion method. Synth. React. Inorganic Metal-Organic Nano-Metal Chem. 42, 360–363 (2012). https://doi.org/10.1080/15533174.2011.611062

    Article  Google Scholar 

  81. V. Rathod, A.V. Anupama, R.V. Kumar, V.M. Jali, B. Sahoo, Correlated vibrations of the tetrahedral and octahedral complexes and splitting of the absorption bands in FTIR spectra of Li-Zn ferrites. Vib. Spectrosc. 92, 267–272 (2017). https://doi.org/10.1016/j.vibspec.2017.08.008

    Article  Google Scholar 

  82. S. Sharma, M.K. Verma, N.D. Sharma, N. Choudhary, S. Singh, D. Singh, Rare-earth doped Ni–Co ferrites synthesized by Pechini method: Cation distribution and high temperature magnetic studies. Ceram. Int. 47, 17510–17519 (2021). https://doi.org/10.1016/j.ceramint.2021.03.069

    Article  Google Scholar 

  83. S.A. Hassanzadeh-Tabrizi, S. Behbahanian, J. Amighian, Synthesis and magnetic properties of NiFe2−xSmxO4 nanopowder. J. Magn. Magn. Mater. 410, 242–247 (2016). https://doi.org/10.1016/j.jmmm.2016.03.015

    Article  ADS  Google Scholar 

  84. G. Bulai, L. Diamandescu, I. Dumitru, S. Gurlui, M. Feder, O.F. Caltun, Effect of rare earth substitution in cobalt ferrite bulk materials. J. Magn. Magn. Mater. 390, 123–131 (2015). https://doi.org/10.1016/j.jmmm.2015.04.089

    Article  ADS  Google Scholar 

  85. M.A. Khan, M.U. Islam, M. Ishaque, I.Z. Rahman, A. Genson, S. Hampshire, Structural and physical properties of Ni–Tb–Fe–O system. Mater Charact 60, 73–78 (2009). https://doi.org/10.1016/j.matchar.2008.06.004

    Article  Google Scholar 

  86. S. Kumar, T.J. Shinde, P.N. Vasambekar, Microwave synthesis and characterization of nanocrystalline Mn-Zn ferrites. Adv. Mater. Lett. 4, 373–377 (2013). https://doi.org/10.5185/amlett.2012.10429

    Article  Google Scholar 

  87. H.M. Zaki, H.A. Dawoud, Far-infrared spectra for copper–zinc mixed ferrites. Physica B 405, 4476–4479 (2010). https://doi.org/10.1016/j.physb.2010.08.018

    Article  ADS  Google Scholar 

  88. N. Singh, A. Agarwal, S. Sanghi, P. Singh, Effect of magnesium substitution on dielectric and magnetic properties of Ni–Zn ferrite. Physica B 406, 687–692 (2011). https://doi.org/10.1016/j.physb.2010.11.087

    Article  ADS  Google Scholar 

  89. S. Ikram, J. Jacob, M.I. Arshad, K. Mahmood, A. Ali, N. Sabir, N. Amin, S. Hussain, Tailoring the structural, magnetic and dielectric properties of Ni-Zn-CdFe2O4 spinel ferrites by the substitution of lanthanum ions. Ceram. Int. 45, 3563–3569 (2019). https://doi.org/10.1016/j.ceramint.2018.11.015

    Article  Google Scholar 

  90. M.S. Sikder, M.D. Hossain, I. Sardar, Md. Sarowar Hossain, M.N.I. Khan, M.R. Rahman, Improved magnetic and dielectric quality factors with low losses in rare earth (Eu) substituted Co-Ni-Zn ferrites for high frequency devices. Results Phys. 46, 106320 (2023). https://doi.org/10.1016/j.rinp.2023.106320

    Article  Google Scholar 

  91. R. Ranga, K. Kumar, A. Kumar, Influence of rare-earth La3+ ion doping on microstructural, magnetic and dielectric properties of Mg0.5Ni0.5Fe2-xLaxO4 (0 ≤ x ≤ 0.1) ferrite nanoparticles. Ceram. Int. 49, 33333–33350 (2023). https://doi.org/10.1016/j.ceramint.2023.08.048

    Article  Google Scholar 

  92. N. Rezlescu, E. Rezlescu, F. Tudorache, P. Popa, Gas sensing properties of porous Cu-. Cd- and Zn- ferrites, Romanian Reports in Physics 61, 223–234 (2009)

    Google Scholar 

  93. S.A. Jadhav, S.B. Somvanshi, S.S. Gawali, K. Zakade, K.M. Jadhav, Rare earth-doped mixed Ni–Cu–Zn ferrites as an effective photocatalytic agent for active degradation of Rhodamine B dye. J. Rare Earths (2023). https://doi.org/10.1016/j.jre.2023.03.004

    Article  Google Scholar 

  94. V. Kumar, N. Kumar, S. Bhushan Das, R.K. Singh, K. Sarkar, M. Kumar, Sol-gel assisted synthesis and tuning of structural, photoluminescence, magnetic and multiferroic properties by annealing temperature in nanostructured zinc ferrite. Mater. Today: Proc. 47, 6242–6248 (2021). https://doi.org/10.1016/j.matpr.2021.05.215

    Article  Google Scholar 

  95. S.M. Patange, S.E. Shirsath, S.P. Jadhav, V.S. Hogade, S.R. Kamble, K.M. Jadhav, Elastic properties of nanocrystalline aluminum substituted nickel ferrites prepared by co-precipitation method. J. Mol. Struct. 1038, 40–44 (2013). https://doi.org/10.1016/j.molstruc.2012.12.053

    Article  ADS  Google Scholar 

  96. R.A. Pawar, S.S. Desai, S.M. Patange, S.S. Jadhav, K.M. Jadhav, Inter-atomic bonding and dielectric polarization in Gd3+ incorporated Co-Zn ferrite nanoparticles. Physica B 510, 74–79 (2017). https://doi.org/10.1016/j.physb.2017.01.011

    Article  ADS  Google Scholar 

  97. E. Hema, A. Manikandan, M. Gayathri, M. Durka, S.A. Antony, B.R. Venkatraman, The role of Mn2+-doping on structural, morphological, optical, magnetic and catalytic properties of spinel ZnFe2O4 nanoparticles. J. Nanosci. Nanotechnol. 16, 5929–5943 (2016). https://doi.org/10.1166/jnn.2016.11037

    Article  Google Scholar 

  98. E.C. Devi, S.D. Singh, Magnetic and photoluminescence properties of rare-earth substituted quaternary spinel ferrite nanoparticles. Ceram. Int. 49, 8409–8416 (2023). https://doi.org/10.1016/j.ceramint.2022.11.003

    Article  Google Scholar 

  99. S.O. Aisida, I. Ahmad, T. Zhao, M. Maaza, F.I. Ezema, Calcination effect on the photoluminescence, optical, structural, and magnetic properties of polyvinyl alcohol doped ZnFe2O4 nanoparticles. J. Macromol. Sci. Part B 59, 295–308 (2020). https://doi.org/10.1080/00222348.2020.1713519

    Article  ADS  Google Scholar 

  100. G. Vijayaprasath, R. Murugan, G. Ravi, T. Mahalingam, Y. Hayakawa, Characterization of dilute magnetic semiconducting transition metal doped ZnO thin films by sol–gel spin coating method. Appl. Surf. Sci. 313, 870–876 (2014). https://doi.org/10.1016/j.apsusc.2014.06.093

    Article  Google Scholar 

  101. M.F. Valan, A. Manikandan, S.A. Antony, Microwave combustion synthesis and characterization studies of magnetic Zn(1–x)Cd(x)Fe2O4 (0 ≤ x ≤ 0.5) nanoparticles. J. Nanosci. Nanotechnol. 15, 4543–4551 (2015). https://doi.org/10.1166/jnn.2015.9801

    Article  Google Scholar 

  102. J. Li, Z. Huang, D. Wu, G. Yin, X. Liao, J. Gu, D. Han, Preparation and protein detection of zn−ferrite film with magnetic and photoluminescence properties. J. Phys. Chem. C 114, 1586–1592 (2010). https://doi.org/10.1021/jp907107s

    Article  Google Scholar 

  103. S.P. Keerthana, R. Yuvakkumar, P.S. Kumar, G. Ravi, D. Velauthapillai, Rare earth metal (Sm) doped zinc ferrite (ZnFe2O4) for improved photocatalytic elimination of toxic dye from aquatic system. Environ. Res. 197, 111047 (2021). https://doi.org/10.1016/j.envres.2021.111047

    Article  Google Scholar 

  104. S. Sugi, S. Radhika, C.M. Padma, Co-precipitation of zinc ferrite nanoparticles in the presence and absence of polyvinyl alcohol with other constant parameters and the analysis of polyvinyl alcohol mediated zinc ferrite nanoparticles. Mater. Chem. Phys. 292, 126799 (2022). https://doi.org/10.1016/j.matchemphys.2022.126799

    Article  Google Scholar 

  105. K. Tanaka, S. Nakashima, K. Fujita, K. Hirao, High magnetization and the Faraday effect for ferrimagnetic zinc ferrite thin film. J. Phys. Condens. Matter 15, L469 (2003). https://doi.org/10.1088/0953-8984/15/30/101

    Article  ADS  Google Scholar 

  106. A.K. Srivastava, M. Deepa, N. Bahadur, M.S. Goyat, Influence of Fe doping on nanostructures and photoluminescence of sol–gel derived ZnO. Mater. Chem. Phys. 114, 194–198 (2009). https://doi.org/10.1016/j.matchemphys.2008.09.005

    Article  Google Scholar 

  107. Z.K. Heiba, M.B. Mohamed, N.G. Imam, The reflection of Cr/Fe substitution on the structural, magnetic and photoluminescence features of Zn–Ni based ferrite. J. Supercond. Nov. Magn. 30, 3123–3128 (2017). https://doi.org/10.1007/s10948-017-4112-7

    Article  Google Scholar 

  108. R. Chen, J.L. Lawless, V. Pagonis, A model for explaining the concentration quenching of thermoluminescence. Radiat. Meas. 46, 1380–1384 (2011). https://doi.org/10.1016/j.radmeas.2011.01.022

    Article  Google Scholar 

  109. S. Debnath, R. Das, Study of the optical properties of Zn doped Mn spinel ferrite nanocrystals shows multiple emission peaks in the visible range—a promising soft ferrite nanomaterial for deep blue LED. J. Mol. Struct. 1199, 127044 (2020). https://doi.org/10.1016/j.molstruc.2019.127044

    Article  Google Scholar 

  110. A. Singh, A. Singh, S. Singh, P. Tandon, B.C. Yadav, R.R. Yadav, Synthesis, characterization and performance of zinc ferrite nanorods for room temperature sensing applications. J. Alloy. Compd. 618, 475–483 (2015). https://doi.org/10.1016/j.jallcom.2014.08.190

    Article  Google Scholar 

  111. M. Abdur Rahman, R. Radhakrishnan, Microstructural properties and antibacterial activity of Ce doped NiO through chemical method. SN Appl. Sci. 1, 221 (2019). https://doi.org/10.1007/s42452-019-0232-y

    Article  Google Scholar 

  112. D.D. Andhare, S.R. Patade, J.S. Kounsalye, K.M. Jadhav, Effect of Zn doping on structural, magnetic and optical properties of cobalt ferrite nanoparticles synthesized via. Co-precipitation method. Phys. B Condens. Matter 583, 412051 (2020). https://doi.org/10.1016/j.physb.2020.412051

    Article  Google Scholar 

  113. M. Dongol, M.M. El-Nahass, A. El-Denglawey, A.F. Elhady, A.A. Abuelwafa, Optical properties of nano 5,10,15,20-tetraphenyl-21H,23H-prophyrin nickel (II) thin films. Curr. Appl. Phys. 12, 1178–1184 (2012). https://doi.org/10.1016/j.cap.2012.02.051

    Article  ADS  Google Scholar 

  114. M. Uzair, S. Kanwal, M.I. Khan, W. Shahid, B.S. Almutairi, M. Amin, N. Ansar, S. Shahid, J.R. Choi, Effect of mn doped on structural, optical, and dielectric properties of BiFe1–xMnxO3 for efficient antioxidant activity. ACS Omega 8, 42390–42397 (2023). https://doi.org/10.1021/acsomega.3c04714

    Article  Google Scholar 

  115. S.K. Tripathy, Refractive indices of semiconductors from energy gaps. Opt. Mater. 46, 240–246 (2015). https://doi.org/10.1016/j.optmat.2015.04.026

    Article  ADS  Google Scholar 

  116. A. Korsakov, D. Salimgareev, A. Lvov, L. Zhukova, IR spectroscopic determination of the refractive index of Ag1−xTlxBr 1–05.4xI0.54x (0⩽x⩽0.05) crystals. Opt. Laser Technol. 93, 18–23 (2017). https://doi.org/10.1016/j.optlastec.2017.01.030

    Article  ADS  Google Scholar 

  117. S.A. Umar, M.K. Halimah, K.T. Chan, A.A. Latif, Polarizability, optical basicity and electric susceptibility of Er3+ doped silicate borotellurite glasses. J. Non-Cryst. Solids 471, 101–109 (2017). https://doi.org/10.1016/j.jnoncrysol.2017.05.018

    Article  ADS  Google Scholar 

  118. V. Dimitrov, T. Komatsu, Electronic polarizability, optical basicity and non-linear optical properties of oxide glasses. J. Non-Cryst. Solids 249, 160–179 (1999). https://doi.org/10.1016/S0022-3093(99)00317-8

    Article  ADS  Google Scholar 

  119. M.A. Abdo, N.M. Basfer, M.S. Sadeq, The structure, correlated vibrations, optical parameters and metallization criterion of Mn–Zn–Cr nanoferrites. J. Mater. Sci. Mater. Electron. 32, 15814–15825 (2021). https://doi.org/10.1007/s10854-021-06134-8

    Article  Google Scholar 

  120. I. Sharifi, H. Shokrollahi, Structural, Magnetic and Mössbauer evaluation of Mn substituted Co–Zn ferrite nanoparticles synthesized by co-precipitation. J. Magn. Magn. Mater. 334, 36–40 (2013). https://doi.org/10.1016/j.jmmm.2013.01.021

    Article  ADS  Google Scholar 

  121. T. Gupta, C.C. Chauhan, A.R. Kagdi, S.S. Meena, R.B. Jotania, C. Singh, C.B. Basak, Investigation on structural, hysteresis, Mössbauer properties and electrical parameters of lightly Erbium substituted X-type Ba2Co2ErxFe28-xO46 hexaferrites. Ceram. Int. 46, 8209–8226 (2020). https://doi.org/10.1016/j.ceramint.2019.12.049

    Article  Google Scholar 

  122. A.A. Afify, Z.M. Abd El-Fattah, M.S.M. Esmail, H.H. El-Bahnasawy, Comparative Mössbauer and first principles calculations for selected iron oxides and ferrites nanoparticles. Mater. Today Commun. 35, 106193 (2023). https://doi.org/10.1016/j.mtcomm.2023.106193

    Article  Google Scholar 

  123. N.A.S. Nogueira, V.H.S. Utuni, Y.C. Silva, P.K. Kiyohara, I.F. Vasconcelos, M.A.R. Miranda, J.M. Sasaki, X-ray diffraction and Mossbauer studies on superparamagnetic nickel ferrite (NiFe2O4) obtained by the proteic sol–gel method. Mater. Chem. Phys. 163, 402–406 (2015). https://doi.org/10.1016/j.matchemphys.2015.07.057

    Article  Google Scholar 

  124. C. Upadhyay, H.C. Verma, C. Rath, K.K. Sahu, S. Anand, R.P. Das, N.C. Mishra, Mössbauer studies of nanosize Mn1−xZnxFe2O4. J. Alloy. Compd. 326, 94–97 (2001). https://doi.org/10.1016/S0925-8388(01)01219-1

    Article  Google Scholar 

  125. A. Javed, T. Szumiata, A. Sarwar, T. Fatima, Structure and Mössbauer spectroscopy studies of Ni0.5Zn0.5NdxFe2-xO4 (000 ≤ x ≤ 0.10) ferrites. Mater. Chem. Phys. 221, 99–107 (2019). https://doi.org/10.1016/j.matchemphys.2018.09.042

    Article  Google Scholar 

  126. T. Gupta, C.C. Chauhan, S.S. Meena, A.A. Gor, R. Meena, A. Singh, R.B. Jotania, Influence of Sm and Cd co-substitutions on physical, magnetic, Mössbauer, electric, and dielectric properties of Co2X hexagonal ferrites in presence of a hematite phase. Ceram. Int. 48, 36802–36813 (2022). https://doi.org/10.1016/j.ceramint.2022.08.244

    Article  Google Scholar 

  127. A. Baykal, H. Sözeri, H. Güngüneş, I. Auwal, S.E. Shirsath, M. Sertkol, M. Amir, Synthesis and structural and magnetic characterization of BaZnxFe12−xO19 hexaferrite: hyperfine interactions. J. Supercond. Nov. Magn. 30, 1585–1592 (2017). https://doi.org/10.1007/s10948-016-3958-4

    Article  Google Scholar 

  128. A.K. Nandanwar, D.L. Chaodhary, S.N. Kamde, D.S. Choudhary, K.G. Rewatkar, Study of structural and magnetic properties of Zinc-Substituted Cadmium ferrite nanocrystals. Mater. Today Proc. 29, 951–955 (2020). https://doi.org/10.1016/j.matpr.2020.05.617

    Article  Google Scholar 

  129. S. Raghuvanshi, F. Mazaleyrat, S.N. Kane, Mg1-xZnxFe2O4 nanoparticles: Interplay between cation distribution and magnetic properties. AIP Adv. 8, 047804 (2018). https://doi.org/10.1063/1.4994015

    Article  ADS  Google Scholar 

  130. B. Albini, S. Restelli, M. Ambrosetti, M. Bini, F. D’Amico, M.C. Mozzati, P. Galinetto, Raman spectroscopy in pure and doped zinc ferrites nanoparticles. J. Mater. Sci. Mater. Electron. 34, 1030 (2023). https://doi.org/10.1007/s10854-023-10464-0

    Article  Google Scholar 

  131. N.B. Rachna, A. Singh, Agarwal, Preparation, characterization, properties and applications of nano zinc ferrite. Mater. Today Proc. 5, 9148–9155 (2018). https://doi.org/10.1016/j.matpr.2017.10.035

    Article  Google Scholar 

  132. D. Varshney, K. Verma, A. Kumar, Structural and vibrational properties of ZnxMn1−xFe2O4 (x=0.0, 0.25, 0.50, 0.75, 1.0) mixed ferrites. Mater. Chem. Phys. 131, 413–419 (2011). https://doi.org/10.1016/j.matchemphys.2011.09.066

    Article  Google Scholar 

  133. C.A. Palacio Gómez, C.A. Barrero Meneses, J.A. Jaén, Raman, infrared and Mössbauer spectroscopic studies of solid-state synthesized Ni-Zn ferrites. J. Magn. Magn. Mater. 505, 166710 (2020). https://doi.org/10.1016/j.jmmm.2020.166710

    Article  Google Scholar 

  134. H. Singh, S. Parmar, B. Ray, V.K. Lokku, D. Kumar, K. Lakshmi Bhavani, D. Nagaraju, D.-V.N. Vo, A. Sharma, S. Datar, S. Banerjee, P.P. Singh, Ultrasonically assisted solvohydrothermal synthesis of nanocrystalline Zn-Ni ferrite advanced material for EMI shielding. J. Alloys Compd. 906, 164199 (2022). https://doi.org/10.1016/j.jallcom.2022.164199

    Article  Google Scholar 

  135. D. Peddis, N. Yaacoub, M. Ferretti, A. Martinelli, G. Piccaluga, A. Musinu, C. Cannas, G. Navarra, J.M. Greneche, D. Fiorani, Cationic distribution and spin canting in CoFe2O4 nanoparticles. J. Phys. Condens. Matter 23, 426004 (2011). https://doi.org/10.1088/0953-8984/23/42/426004

    Article  ADS  Google Scholar 

  136. J. Marx, H. Huang, K.S.M. Salih, W.R. Thiel, V. Schünemann, Spin canting in ferrite nanoparticles. Hyperfine Interact. 237, 41 (2016). https://doi.org/10.1007/s10751-016-1241-5

    Article  ADS  Google Scholar 

  137. D. Peddis, C. Cannas, G. Piccaluga, E. Agostinelli, D. Fiorani, Spin-glass-like freezing and enhanced magnetization in ultra-small CoFe2O4 nanoparticles. Nanotechnology 21, 125705 (2010). https://doi.org/10.1088/0957-4484/21/12/125705

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was performed in the Specialized Materials Science Lab and Advanced Nanomaterials Research Lab at Beirut Arab University, Lebanon, in collaboration with the University du Mans in France and Alexandria University in Egypt.

Funding

No Funding.

Author information

Authors and Affiliations

Authors

Contributions

Hani Korek: Conceptualization, Methodology, Data curation, and writing the original draft. Dr. Khulud Habanjar: Review and editing. Prof. Ramadan Awad: Supervision and review.

Corresponding author

Correspondence to Khulud Habanjar.

Ethics declarations

Conflict of interest

The authors declare that they have no competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethics approval and consent to participate

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korek, H., Habanjar, K. & Awad, R. Structural, cation distribution, mechanical, and optical properties of rare-earth doped cadmium zinc ferrites. Appl. Phys. A 130, 319 (2024). https://doi.org/10.1007/s00339-024-07410-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-024-07410-0

Keywords

Navigation