Skip to main content
Log in

Investigating spectral enhancement of monolayer MoS2 coupled with Ag nanowires gap-mode surface plasmons

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The combination with surface plasmons (SPs) nanostructures is an effective method to improve the optical properties of two-dimensional (2D) materials such as molybdenum disulfide (MoS2). Silver nanowire (Ag NW) is one of the most important SPs materials because of its tunable SPs resonance characteristics from visible light to near-infrared light. SPs can effectively confine the light field to the nanometer scale for propagation and localization, breaking the limit of optical diffraction, and the distribution of its electromagnetic field often depends on the dielectric environment. The existence of the gap-mode SPs makes the electromagnetic field between the Ag NWs coupled, so the double Ag NWs can produce additional electromagnetic field enhancement than the single Ag NW. Here, the gap-mode SPs of two different positional relationships of Ag NWs were studied through theoretical simulation, and the increase in the field enhancement factor was obtained as a function of gap distance. It is experimentally confirmed that the Raman and photoluminescence intensities of monolayer MoS2 are enhanced by the coupling of gap-mode SPs, and the effects of doping and stress are excluded. The results are helpful to better understand the gain mechanism of gap-mode SPs on the optical properties of 2D materials, and provide a reference for the design of new SPs nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. A. Abnavi, R. Ahmadi, H. Ghanbari et al., Flexible high-performance photovoltaic devices based on 2D MoS2 diodes with geometrically asymmetric contact areas. Adv. Funct. Mater. 33(7), 2210619 (2023)

    Article  Google Scholar 

  2. Y.X. Sun, L.Y. Jiang, Z. Wang et al., Multiwavelength high-detectivity MoS2 photodetectors with schottky contacts. ACS Nano 16(12), 20272–20280 (2022)

    Article  Google Scholar 

  3. K.F. Mak, C.G. Lee, J. Hone et al., Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105(13), 136805 (2010)

    Article  ADS  Google Scholar 

  4. A. Splendiani, S. Liang, Z. Yuanbo et al., Emerging photoluminescence in monolayer MoS2. Nano Lett. 10(4), 1271–1275 (2010)

    Article  ADS  Google Scholar 

  5. O. Lopez-Sanchez, D. Lembke, M. Kayci et al., Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 8(7), 497–501 (2013)

    Article  ADS  Google Scholar 

  6. A.C. Gomez, M. Barkelid, A.M. Goossens et al., Laser-thinning of MoS2: on demand generation of a single-layer semiconductor. Nano Lett. 12(6), 3187–3192 (2012)

    Article  ADS  Google Scholar 

  7. M.H. Jeong, H.S. Ra, S.H. Lee et al., Multilayer WSe2/MoS2 heterojunction phototransistors through periodically arrayed nanopore structures for bandgap engineering. Adv. Mater. 34(8), 2108412 (2022)

    Article  Google Scholar 

  8. N. Li, C.L. He, Q.Q. Wang et al., Gate-tunable large-scale flexible monolayer MoS2 devices for photodetectors and optoelectronic synapses. Nano Res. 15(6), 5418–5424 (2022)

    Article  ADS  Google Scholar 

  9. L.Q. Zhuo, D.Q. Li, W.D. Chen et al., High performance multifunction-in-one optoelectronic device by integrating graphene/MoS2 heterostructures on side-polished fiber. Nanophotonics 11(6), 1137–1147 (2022)

    Article  Google Scholar 

  10. B. Radisavljevic, A. Radenovic, J. Brivio et al., Single-layer MoS2 transistors. Nat. Nanotechnol. 6(3), 147–150 (2011)

    Article  ADS  Google Scholar 

  11. K.F. Mak, J. Shan, Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photonics 10(4), 216–226 (2016)

    Article  ADS  Google Scholar 

  12. M. Bernardi, M. Palummo, J.C. Grossman, Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials. Nano Lett. 13(8), 3664–3670 (2013)

    Article  ADS  Google Scholar 

  13. T. Laroche, A. Vial, M. Roussey, Crystalline structure’s influence on the near-field optical properties of single plasmonic nanowires. Appl. Phys. Lett. 91(12), 123101 (2007)

    Article  ADS  Google Scholar 

  14. E. Hutter, J.H. Fendler, Exploitation of localized surface plasmon resonance. Adv. Mater. 16(19), 1685–1706 (2004)

    Article  Google Scholar 

  15. W.L. Barnes, A. Dereux, T.W. Ebbesen, Surface plasmon subwavelength optics. Nature 424, 824–830 (2003)

    Article  ADS  Google Scholar 

  16. A. Fratalocchi, C.M. Dodson, R. Zia et al., Nano-optics gets practical. Nat. Nanotechnol. 10(1), 11–15 (2015)

    Article  ADS  Google Scholar 

  17. Y. Zhang, W. Chen, T. Fu et al., Simultaneous surface-enhanced resonant Raman and fluorescence spectroscopy of monolayer MoSe2: determination of ultrafast decay rates in nanometer dimension. Nano Lett. 19(9), 6284–6291 (2019)

    Article  ADS  Google Scholar 

  18. F. Cheng, A.D. Johnson, Y. Tsai et al., Enhanced photoluminescence of monolayer WS2 on Ag films and nanowire-WS2-film composites. ACS Photonics 4(6), 1421–1430 (2017)

    Article  Google Scholar 

  19. M.H. Tahersima, M.D. Birowosuto, Z. Ma et al., Testbeds for transition metal dichalcogenide photonics: efficacy of light emission enhancement in monomer vs dimer nanoscale antennae. ACS Photonics 4(7), 1713–1721 (2017)

    Article  Google Scholar 

  20. J. Lin, H. Li, H. Zhang et al., Plasmonic enhancement of photocurrent in MoS2 field-effect-transistor. Appl. Phys. Lett. 102(20), 203109 (2013)

    Article  ADS  Google Scholar 

  21. Y. Li, M. Kang, J. Shi et al., Transversely divergent second harmonic generation by surface plasmon polaritons on single metallic nanowires. Nano Lett. 17(12), 7803–7808 (2017)

    Article  ADS  Google Scholar 

  22. Z. Wu, J. Yang, N.K. Manjunath et al., Gap-mode surface-plasmon-enhanced photoluminescence and photo response of MoS2. Adv. Mater. 30(27), 1706527 (2018)

    Article  Google Scholar 

  23. B. Sun, Z. Wang, Z. Liu et al., Tailoring of silver nano-cubes with optimized localized surface plasmon in a gap mode for a flexible MoS2 photodetector. Adv. Funct. Mater. 29(26), 1900541 (2019)

    Article  Google Scholar 

  24. P. Ni, A. Bugallo, V. Arreola et al., Gate-tunable emission of exciton-plasmon polaritons in hybrid MoS2-gap-mode metasurfaces. ACS Photonics 6(7), 1594–1601 (2019)

    Article  Google Scholar 

  25. Q. Hao, J. Pang, Y. Zhang et al., Boosting the photoluminescence of monolayer MoS2 on high-density nanodimer arrays with sub-10 nm gap. Adv. Opt. Mater. 6(2), 1700984 (2018)

    Article  Google Scholar 

  26. J. Miao, W. Hu, Y. Jing et al., Surface plasmon-enhanced photodetection in few layer MoS2 phototransistors with Au nanostructure arrays. Small 11(20), 2392–2398 (2015)

    Article  Google Scholar 

  27. B. Lee, J. Park, G.H. Han et al., Fano resonance and spectrally modified photoluminescence enhancement in monolayer MoS2 integrated with plasmonic nanoantenna array. Nano Lett. 15(5), 3646–3653 (2015)

    Article  ADS  Google Scholar 

  28. H.S. Lee, M.S. Kim, Y. Jin et al., Efficient exciton-plasmon conversion in Ag nanowire/monolayer MoS2 hybrids: direct imaging and quantitative estimation of plasmon coupling and propagation. Adv. Opt. Mater. 3(7), 943–947 (2015)

    Article  Google Scholar 

  29. N. Scheuschner, O. Ochedowski, A.M. Kaulitz et al., Photoluminescence of freestanding single-and few-layer MoS2. Phys. Rev. B 89(12), 106–112 (2014)

    Article  Google Scholar 

  30. S. Mouri, Y. Miyauchi, K. Matsuda, Tunable photoluminescence of monolayer MoS2 via chemical doping. Nano Lett. 13(12), 5944–5948 (2013)

    Article  ADS  Google Scholar 

  31. Y. Sun, Z. Zhou, Z. Huang et al., Band structure engineering of interfacial semiconductors based on atomically thin lead iodide crystals. Adv. Mater. 31(17), 1806562 (2019)

    Article  Google Scholar 

  32. B. Chakraborty, A. Bera, D. Muthu et al., Symmetry-dependent phonon renormalization in monolayer MoS2 transistor. Phys. Rev. B 85(16), 396–404 (2012)

    Article  Google Scholar 

  33. K. Kojima, H.E. Lim, Z. Liu et al., Restoring the intrinsic optical properties of CVD-grown MoS2 monolayers and their heterostructures. Nanoscale 11(27), 12798–12803 (2019)

    Article  Google Scholar 

  34. M.S. Tame, K.R. Mcenery, ŞK. Özdemir et al., Quantum plasmonics. Nat. Phys. 9(6), 329–340 (2013)

    Article  Google Scholar 

  35. E. Cao, W. Lin, M. Sun et al., Exciton-plasmon coupling interactions: from principle to applications. Nanophotonics 7(1), 145–167 (2018)

    Article  Google Scholar 

  36. H.J. Conley, B. Wang, J.I. Ziegler et al., Bandgap engineering of strained monolayer and bilayer MoS2. Nano Lett. 13(8), 3626 (2013)

    Article  ADS  Google Scholar 

  37. K. He, C. Poole, K.F. Mak et al., Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS2. Nano Lett. 13(6), 2931–2936 (2013)

    Article  ADS  Google Scholar 

  38. Z.Q. Wu, J.L. Yang, N.K. Manjunath et al., Gap-mode surface-plasmon-enhanced photoluminescence and photoresponse of MoS2. Adv. Mater. 30(27), 1706527 (2018)

    Article  Google Scholar 

  39. H.Y. Lee, D. Nelson, W. Yan et al., Gap-surface plasmon-enhanced photoluminescence of InSe. Phys. Status Solidi B 260(5), 2200436 (2023)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank the support from the Jiangsu Agriculture Science and Technology Innovation Fund (No. CX(21)1007).

Author information

Authors and Affiliations

Authors

Contributions

Formal analysis, investigation: Weibin Zhang; Data curation: Cunwei Kong; Material characterization: Chunming Ji; Evaluation of results and editing: Xinfeng Zhang; Supervising, writing—review & editing: Quan Wang.

Corresponding author

Correspondence to Quan Wang.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 181 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Kong, C., Ji, C. et al. Investigating spectral enhancement of monolayer MoS2 coupled with Ag nanowires gap-mode surface plasmons. Appl. Phys. A 130, 241 (2024). https://doi.org/10.1007/s00339-024-07403-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-024-07403-z

Keywords

Navigation