Skip to main content
Log in

Quantitative detection of lateral subsurface cracks based on laser-generated Rayleigh waves in the frequency domain

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, the depth and length of lateral subsurface cracks were gauged using laser-generated Rayleigh waves in the frequency domain. First, the frequency domain characteristics of reflected and transmitted Rayleigh waves after a laser-generated Rayleigh wave interacts with lateral subsurface cracks are investigated based on the finite element method (FEM). The simulation results reveal that there is a certain relationship between the center frequency of reflected and transmitted Rayleigh waves and crack size. The center frequency of the reflected Rayleigh wave decreases with increasing crack length but is independent of depth. When the crack length remains unchanged, the center frequency of the transmitted Rayleigh wave increases with increasing crack depth. Then, the quantitative relationships between the ratio of the crack length to the incident Rayleigh wavelength and the ratio of the reflected Rayleigh wave frequency to the incident Rayleigh wave frequency, the ratio of the crack depth to the incident Rayleigh wavelength and the ratio of the transmitted Rayleigh wave frequency to the incident Rayleigh wave frequency were obtained via multiple function fitting, and a method for the quantitative detection of the lateral subsurface crack depth and length was proposed. Finally, experimental and simulated data were used to validate the proposed relationships, and the results showed that the relative error of the measured crack length did not exceed 7.19% and that the relative error of the measured crack depth did not exceed 14.82%. The results show that the method has good application prospects for the quantitative measurement of lateral subsurface crack depth and length.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All data that support the findings of this study are included within the article (and any supplementary files).

References

  1. O.G. Diaz, G.G. Luna, Z.R. Liao, D. Axinte, The new challenges of machining ceramic matrix composites (CMCs): review of surface integrity. Int. J. Mach. Tools Manuf 139, 24–36 (2019). https://doi.org/10.1016/j.ijmachtools.2019.01.003

    Article  Google Scholar 

  2. B. Zhang, J.F. Yin, The ‘skin effect’ of subsurface damage distribution in materials subjected to high-speed machining. Int. J. Extreme Manuf. 1(1), 012007 (2019). https://doi.org/10.1088/2631-7990/ab103b

    Article  Google Scholar 

  3. J.F. Yin, Q. Bai, B. Zhang, Subsurface damage detection on ground silicon wafers using polarized laser scattering. J. Manuf. Sci. Eng. 141(10), 101012 (2019). https://doi.org/10.1115/1.4044417

    Article  Google Scholar 

  4. Y. Yan, Y.H. Wang, P. Zhou, N. Huang, D.M. Guo, Near-field microscopy inspection of nano scratch defects on the monocrystalline silicon surface. Precis. Eng.-J. Int. Soc. Precis. Eng. Nanotechnol. 56, 506–512 (2019). https://doi.org/10.1016/j.precisioneng.2019.02.008

    Article  Google Scholar 

  5. M.M. Barysheva, N.I. Chkhalo, M.N. Drozdov, M.S. Mikhailenko, A.E. Pestov, N.N. Salashchenko, Y.A. Vainer, P.A. Yunin, M.V. Zorina, X-ray scattering by the fused silica surface etched by low-energy Ar ions. J. X-Ray Sci. Technol. 27(5), 857–870 (2019). https://doi.org/10.3233/XST-190495

    Article  Google Scholar 

  6. A.K. Kromine, P.A. Fomitchov, S. Krishnaswamy, J.D. Achenbach, Detection of subsurface defects using laser based technique. AIP Conf. Proc. 557, 1612–1617 (2001). https://doi.org/10.1063/1.1373946

    Article  ADS  Google Scholar 

  7. T. Hayashi, N. Mori, T. Ueno, Non-contact imaging of subsurface defects using a scanning laser source. Ultrasonics 119, 106560 (2022). https://doi.org/10.1016/j.ultras.2021.106560

    Article  Google Scholar 

  8. G.L. Lv, Z.J. Yao, D. Chen, Y.H. Li, H.Q. Cao, A.M. Yin, Y.J. Liu, S.F. Guo, Fast and high-resolution laser-ultrasonic imaging for visualizing subsurface defects in additive manufacturing components. Mater. Des. 225, 111454 (2023). https://doi.org/10.1016/j.matdes.2022.111454

    Article  Google Scholar 

  9. P. Song, J.Y. Liu, Z.J. Li, S.Y. Wu, X.G. Sun, H.H. Yue, M. Pawlak, All-optical laser ultrasonic technique for imaging of subsurface defects in carbon fiber reinforced polymer (CFRP) using an optical microphone. J. Appl. Phys. 131(16), 165106 (2022). https://doi.org/10.1063/5.0087304

    Article  ADS  Google Scholar 

  10. V.V. Narumanchi, F. Pourahmadian, J. Lum, A. Townsend, J.W. Tringe, D.M. Stobbe, T.W. Murray, Laser ultrasonic imaging of subsurface defects with the linear sampling method. Opt. Express 31(5), 9098–9111 (2023). https://doi.org/10.1364/OE.485084

    Article  ADS  Google Scholar 

  11. K. Nakahata, K. Karakawa, K. Ogi, K. Mizukami, K. Ohira, M. Maruyama, S. Wada, T. Namita, T. Shiina, Three-dimensional SAFT imaging for anisotropic materials using photoacoustic microscopy. Ultrasonics 98, 82–87 (2019). https://doi.org/10.1016/j.ultras.2019.05.006

    Article  Google Scholar 

  12. D. Levesque, A. Blouin, C. Neron, J.-P. Monchalin, Performance of laser-ultrasonic F-SAFT imaging. Ultrasonics 40(10), 1057–1063 (2002). https://doi.org/10.1016/S0041-624X(02)00256-1

    Article  Google Scholar 

  13. J. Lin, C.Y. Wang, W. Wang, J. Chen, A.Y. Sun, B.F. Ju, Quantitative evaluation of subsurface cracks with laser-generated Rayleigh wave based on back propagation neural network. Appl. Phys. A-Mater. Sci. Process. 128(7), 581 (2022). https://doi.org/10.1007/s00339-022-05699-3

    Article  ADS  Google Scholar 

  14. K.X. Zhang, G.L. Lv, S.F. Guo, D. Chen, Y.J. Liu, W. Feng, Evaluation of subsurface defects in metallic structures using laser ultrasonic technique and genetic algorithm-back propagation neural network. NDT E Int. 116, 102339 (2020). https://doi.org/10.1016/j.ndteint.2020.102339

    Article  Google Scholar 

  15. S.F. Guo, H.W. Feng, W. Feng, G.L. Lv, D. Chen, Y.J. Liu, X.Y. Wu, Automatic quantification of subsurface defects by analyzing laser ultrasonic signals using convolutional neural networks and wavelet transform. IEEE Trans. Ultrason. Ferroelectr. Freq. ControlUltrason. Ferroelectr. Freq. Control 68(10), 3216–3225 (2021). https://doi.org/10.1109/TUFFC.2021.3087949

    Article  Google Scholar 

  16. G.L. Lv, S.F. Guo, D. Chen, H.W. Feng, K.X. Zhang, Y.J. Liu, W. Feng, Laser ultrasonics and machine learning for automatic defect detection in metallic components. NDT E Int. 133, 102752 (2023). https://doi.org/10.1016/j.ndteint.2022.102752

    Article  Google Scholar 

  17. Z.W. Liu, L. Bin, X.H. Liang, A.Y. Du, Quantifying the subsurface damage and residual stress in ground silicon wafer using laser ultrasonic technology: a Bayesian approach. Mech. Syst. Signal Proc. 173, 109008 (2022). https://doi.org/10.1016/j.ymssp.2022.109008

    Article  Google Scholar 

  18. Y.H. Sohn, S. Krishnaswamy, The scanning laser source technique for detection of surface-breaking and subsurface defect. J. Korean Soc. Nondestruct. Test. 27(3), 246–254 (2007)

    Google Scholar 

  19. D. Chen, G.L. Lv, S.F. Guo, R. Zuo, Y.J. Liu, K.X. Zhang, Z.Q. Su, W. Feng, Subsurface defect detection using phase evolution of line laser-generated Rayleigh waves. Opt. Laser Technol. 131, 106410 (2020). https://doi.org/10.1016/j.optlastec.2020.106410

    Article  Google Scholar 

  20. S. Everton, P. Dickens, C. Tuck, B. Dutton, Using laser ultrasound to detect subsurface defects in metal laser powder bed fusion components. JOM 70(3), 378–383 (2018). https://doi.org/10.1007/s11837-017-2661-7

    Article  Google Scholar 

  21. C.Y. Wang, A.Y. Sun, X.Y. Yang, B.F. Ju, Y.D. Pan, Laser-generated Rayleigh wave for width gauging of subsurface lateral rectangular defects. J. Appl. Phys. 124(6), 065104 (2018). https://doi.org/10.1063/1.5028207

    Article  ADS  Google Scholar 

  22. C. Chen, A.Y. Sun, B.F. Ju, C.Y. Wang, Width and depth gauging of rectangular subsurface defects based on all-optical laser-ultrasonic technology. Appl. Acoust.Acoust. 191, 108684 (2022). https://doi.org/10.1016/j.apacoust.2022.108684

    Article  Google Scholar 

  23. C.Y. Wang, A.Y. Sun, X.Y. Yang, B.F. Ju, Y.D. Pan, Numerical simulation of the interaction of laser-generated Rayleigh waves with subsurface cracks. Appl. Phys. A-Mater. Sci. Process. 124(9), 613 (2018). https://doi.org/10.1007/s00339-018-2039-x

    Article  ADS  Google Scholar 

  24. Y.K. An, Y. Kwon, H. Sohn, Noncontact laser ultrasonic crack detection for plates with additional structural complexities. Struct. Health Monit.. Health Monit. 12(5–6), 522–538 (2013). https://doi.org/10.1177/1475921713500515

    Article  Google Scholar 

  25. J. Guan, Z. Shen, B. Xu, J. Lu, X. Ni, Numerical simulation of laser ultrasonics for detecting subsurface lateral defects. Lasers Mater. Process. Manuf. II. SPIE. 5629, 457–465 (2005). https://doi.org/10.1117/12.572869

    Article  ADS  Google Scholar 

  26. W. Zeng, Y.Y. Yao, S.K. Qi, L. Liu, Finite element simulation of laser-generated surface acoustic wave for identification of subsurface defects. Optik 207, 163812 (2020). https://doi.org/10.1016/j.ijleo.2019.163812

    Article  ADS  Google Scholar 

  27. H.T. Huan, A. Mandelis, L.X. Liu, B. Lashkari, A. Melnikov, Application of linear frequency modulated laser ultrasonic radar in reflective thickness and defect non-destructive testing. NDT E Int. 102, 84–89 (2019). https://doi.org/10.1016/j.ndteint.2018.11.006

    Article  Google Scholar 

  28. C.Y. Wang, Y. Kong, W. Wang, Z.F. Chen, J. Chen, W.L. Zhu, B.F. Ju, Finite element analysis of laser-generated Rayleigh wave for sizing subsurface crack in frequency domain. Optik 260, 169145 (2022). https://doi.org/10.1016/j.ijleo.2022.169145

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant nos. 52205561, 52327807 and 12072097), the Open Foundation of the State Key Laboratory of Fluid Power and Mechatronic Systems (Grant no. GZKF-202312), and the Major Program of Zhejiang Provincial Natural Science Foundation of China (Grant no. LD22E050010).

Author information

Authors and Affiliations

Authors

Contributions

Buer Chen: Conceptualization, Data curation, Methodology, Writing – original draft. Chuanyong Wang: Funding acquisition, Resources, Supervision, Writing – review & editing. Wen Wang: Project administration. Yun Wang: Visualization. Keqing Lu: Formal analysis. Yuanping Ding: Investigation. Jian Chen: Validation. Yuanliu Chen: Software. Bing-Feng Ju: Project administration, Funding acquisition.

Corresponding author

Correspondence to Chuanyong Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, B., Wang, C., Wang, W. et al. Quantitative detection of lateral subsurface cracks based on laser-generated Rayleigh waves in the frequency domain. Appl. Phys. A 130, 245 (2024). https://doi.org/10.1007/s00339-024-07402-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-024-07402-0

Keywords

Navigation