Skip to main content
Log in

Effects of rare earth ions on structural, morphological and photoluminescent properties of non-stoichiometric LiNbO3

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The pseudo-ilmenite structure ABO3 have been increasingly highlighted in the optoelectronic area. Nanoparticles of undoped lithium niobates (LiNbO3) and codoped with rare earths (LiNbO3: Dy3+/Tb3+) were synthesized by the solid-state reaction method and calcined in a controlled way. The properties and structural changes of niobates were evaluated from data obtained in XRD and Rietveld refinement. The SEM-FEG micrographs showed different morphologies obtained (cubes, plates, tetrahedrons and polyhedra) according to the variation of the doping and co-doping process. Optical properties were measured and studied based on the results obtained from the UV-Vis spectrophotometer and photoluminescence assays. The photoluminescence presented by LiNbO3 was associated with the existence of superficial defects in the particles, i.e., centers of recombination of photogenerated charges favorable to the property. The effect of concentration of dopants was investigated in properties photoluminescence. Photometric measurements (CRI, purity, CCT, LER) were analyzed and a modulation of the emitted color as a function of the concentration of the dopants. According to the obtained results, LiNbO3: Dy3+/Tb3+ presents itself as a material with great potential in optical device applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the paper and its Supplementary Information files. Should any raw data files be needed in another format they are available from the corresponding author upon reasonable request. Source data are provided with this paper.

References

  1. K.K. Wong, Properties of Lithium Niobate (INSPEC/Institution of Electrical Engineers, 2002)

    Google Scholar 

  2. C.L. Jia, S. Li, X.X. Song, Optical and structural properties of nd:MgO:LiNbO3 crystal irradiated by 2.8-MeV he ions. Appl. Phys. B 123, 1–5 (2017). https://doi.org/10.1007/S00340-017-6783-Y/FIGURES/5

    Article  Google Scholar 

  3. F. Chen, J.R.V. de Aldana, Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining. Laser Photon Rev. 8, 251–275 (2014). https://doi.org/10.1002/LPOR.201300025

    Article  ADS  Google Scholar 

  4. Z. Min, Q. Zeng, S. Chen, Y. Qin, C. Yao, Tunable photoluminescence of LiNbO3: RE3+ (RE3+ = Dy3+, Sm3+, Dy3+/Sm3+) single-phase phosphors for warm white LEDs. J. Alloys Compd. 924, 166497 (2022). https://doi.org/10.1016/J.JALLCOM.2022.166497

    Article  Google Scholar 

  5. J.G. Murillo, G. Herrera, A. Vega-Rios, S. Flores-Gallardo, A. Duarte-Moller, J. Castillo-Torres, Effect of Zn doping on the photoluminescence properties of LiNbO3 single crystals. Opt. Mater. (Amst). 62, 639–645 (2016). https://doi.org/10.1016/J.OPTMAT.2016.10.059

    Article  ADS  Google Scholar 

  6. B. Xiong, B. Zhang, Q. Lu, Y. Ren, L. Wang, F. Chen, Micro-spectroscopy investigation on femtosecond laser writing of LiNbO3 crystal. Opt. Mater. (Amst). 107, 110103 (2020). https://doi.org/10.1016/J.OPTMAT.2020.110103

    Article  Google Scholar 

  7. M. RaeisianAsl, S.F.K.S. Panahi, M. Jamaati, S.S. Tafreshi, A review on theoretical studies of structural and optoelectronic properties of FA-based perovskite materials with a focus on FAPbI3. Int. J. Energy Res. 46, 13117–13151 (2022). https://doi.org/10.1002/ER.8008

    Article  Google Scholar 

  8. M. Abdi-Jalebi, M.I. Dar, A. Sadhanala, S.P. Senanayak, M. Franckevičius, N. Arora, Y. Hu, M.K. Nazeeruddin, S.M. Zakeeruddin, M. Grätzel, R.H. Friend, Impact of monovalent cation halide additives on the structural and optoelectronic properties of CH3NH3PbI3 perovskite. Adv. Energy Mater. (2016). https://doi.org/10.1002/AENM.201502472

  9. H. Lu, W. Tian, F. Cao, Y. Ma, B. Gu, L. Li, A self-powered and stable all-Perovskite Photodetector-Solar Cell Nanosystem. Adv. Funct. Mater. 26, 1296–1302 (2016). https://doi.org/10.1002/ADFM.201504477

    Article  Google Scholar 

  10. M.V. Smirnov, N.V. Sidorov, M.N. Palatnikov, Luminescence properties of non-stoichiometric lithium niobate crystals of various composition and genesis. Opt. Spectrosc. 130, 160 (2022)

    Google Scholar 

  11. P.K. Panda, Review: environmental friendly lead-free piezoelectric materials. J. Mater. Sci. 44, 5049–5062 (2009). https://doi.org/10.1007/S10853-009-3643-0

    Article  ADS  Google Scholar 

  12. I. Kanno, T. Ichida, K. Adachi, H. Kotera, K. Shibata, T. Mishima, Power-generation performance of lead-free (K,na)NbO3 piezoelectric thin-film energy harvesters. Sens. Actuators Phys. 179, 132–136 (2012). https://doi.org/10.1016/J.SNA.2012.03.003

    Article  Google Scholar 

  13. J. Kim, J.H. Koh, (Na,K)NbO3–(Bi,na)TiO3 piezoelectric ceramics for energy-harvesting applications. J. Eur. Ceram. Soc. 35, 3819–3825 (2015). https://doi.org/10.1016/J.JEURCERAMSOC.2015.07.008

    Article  Google Scholar 

  14. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Lead-free piezoceramics. Nat. 2004. 432, 7013 (2004). https://doi.org/10.1038/nature03028

    Article  Google Scholar 

  15. J. Rödel, W. Jo, K.T.P. Seifert, E.M. Anton, T. Granzow, D. Damjanovic, Perspective on the development of lead-free Piezoceramics. J. Am. Ceram. Soc. 92, 1153–1177 (2009). https://doi.org/10.1111/J.1551-2916.2009.03061.X

    Article  Google Scholar 

  16. C.R. Dumitrescu, V.A. Surdu, H. Stroescu, A.I. Nicoara, I.A. Neacsu, R. Trusca, E. Andronescu, L.T. Ciocan, Alkali niobate powder synthesis using an emerging microwave-assisted hydrothermal method. Materials. 15, 5410 (2022). https://doi.org/10.3390/MA15155410/S1

    Article  ADS  Google Scholar 

  17. T. Ahmad, U. Farooq, R. Phul, Fabrication and photocatalytic applications of Perovskite materials with special emphasis on Alkali-Metal-based niobates and Tantalates. Ind. Eng. Chem. Res. 57, 18–41 (2018). https://doi.org/10.1021/ACS.IECR.7B04641/ASSET/IMAGES/LARGE/IE-2017-04641B_0026.JPEG

    Article  Google Scholar 

  18. P. Wang, F. Yu, Y. Lu, X. Wu, C. Zhao, M. Gao, T. Lin, C. Lin, Achieving power-dependent fluorescence intensity ratio via enhanced photothermal effect in rare-earth and CaCu3TiO12 co-doped alkali niobate ceramics. Ceram. Int. 48, 25431–25438 (2022). https://doi.org/10.1016/J.CERAMINT.2022.05.220

    Article  Google Scholar 

  19. I. Gupta, S. Singh, S. Bhagwan, D. Singh, Rare earth (RE) doped phosphors and their emerging applications: a review. Ceram. Int. 47, 19282 (2021)

    Article  Google Scholar 

  20. A. Bindhu, J.I. Naseemabeevi, S. Ganesanpotti, Distortion and energy transfer assisted tunability in garnet phosphors. Https://Doi Org. 47, 621–664 (2021). https://doi.org/10.1080/10408436.2021.1935211

    Article  Google Scholar 

  21. A.S. Patil, A.V. Patil, C.G. Dighavkar, V.A. Adole, U.J. Tupe, Synthesis techniques and applications of rare earth metal oxides semiconductors: a review. Chem. Phys. Lett. 796, 139555 (2022). https://doi.org/10.1016/J.CPLETT.2022.139555

    Article  Google Scholar 

  22. V. Balaram, Rare earth elements: a review of applications, occurrence, exploration, analysis, recycling, and environmental impact. Geosci. Front. 10, 1285–1303 (2019). https://doi.org/10.1016/J.GSF.2018.12.005

    Article  Google Scholar 

  23. X. Song, M.H. Chang, M. Pecht, Rare-earth elements in lighting and optical applications and their recycling. JOM. 65, 1276–1282 (2013). https://doi.org/10.1007/S11837-013-0737-6/FIGURES/2

    Article  Google Scholar 

  24. R. Sun, D. Zhou, H. Song, Rare earth doping in perovskite luminescent nanocrystals and photoelectric devices. Nano Select. 3, 531–554 (2022). https://doi.org/10.1002/NANO.202100187

    Article  Google Scholar 

  25. G. George, N. Shrivastava, T.L. Moore, C.S. Edwards, Y. Lin, J. Wen, Z. Luo, Rare-earth-doped electrospun scheelite CaWO4 nanofibers with excitation-dependent photoluminescence and high-linearity cathodoluminescence for ratiometric UV wavelength and radiation sensors. Opt. Mater. (Amst). 126, 112130 (2022). https://doi.org/10.1016/J.OPTMAT.2022.112130

    Article  Google Scholar 

  26. T. Tsuboi, S.M. Kaczmarek, G. Boulon, Spectral properties of Yb3+ ions in LiNbO3 single crystals: influences of other rare-earth ions, OH ions, and γ-irradiation. J. Alloys Compd. 380, 196–200 (2004). https://doi.org/10.1016/J.JALLCOM.2004.03.043

    Article  Google Scholar 

  27. S.A. Ayon, S. Hasan, M.M. Billah, S.S. Nishat, A. Kabir, Improved luminescence and photocatalytic properties of Sm3+-doped ZnO nanoparticles via modified sol–gel route: a unified experimental and DFT + U approach. J. Rare Earths. 41, 550–560 (2023). https://doi.org/10.1016/J.JRE.2022.03.004

    Article  Google Scholar 

  28. K.K. Mandari, A.K.R. Police, J.Y. Do, M. Kang, C. Byon, Rare earth metal gd influenced defect sites in N doped TiO2: defect mediated improved charge transfer for enhanced photocatalytic hydrogen production. Int. J. Hydrogen Energy. 43, 2073–2082 (2018). https://doi.org/10.1016/J.IJHYDENE.2017.12.050

    Article  Google Scholar 

  29. M.T.S. Tavares, L.X. Lovisa, V.D. Araújo, E. Longo, M.S. Li, R.M. Nascimento, C.A. Paskocimas, M.R.D. Bomio, F.V. Motta, Fast photocatalytic degradation of an organic dye and photoluminescent properties of Zn doped in(OH)3 obtained by the microwave-assisted hydrothermal method. Mater. Sci. Semicond. Process. 27, 1036–1041 (2014). https://doi.org/10.1016/J.MSSP.2014.08.034

    Article  Google Scholar 

  30. N.V. Sidorov, M.V. Smirnova, N.A. Teplyakovaa, Palatnikov, Photoluminescence and Particular features of the defect structure of congruent and Near-Stoichiometric Lithium Niobate crystals obtained using different technologies. Opt. Spectrosc. 5, 128 (2020)

    Google Scholar 

  31. X. Zhang, J. Zhang, X. Zhang, L. Chen, Y. Luo, X.-. Wang, Enhancement of the red emission in CaTiO3:Pr3+ by addition of rare earth oxides. Chem. Phys. Lett. 434, 237–240 (2007). https://doi.org/10.1016/j.cplett.2006.12.023

    Article  ADS  Google Scholar 

  32. K. Ohnuma, N. Ozaki, Y. Mizuno, T. Hagiwara, K.I. Kakimoto, H. Ohsato, Occupational sites of Sm in BaTiO3 analyzed by rietveld method and EXAFS. Ferroelectrics. 332, 7–11 (2006). https://doi.org/10.1080/00150190500308652

    Article  ADS  Google Scholar 

  33. S. Okamoto, H. Yamamoto, Emission from BaTiO3:Pr3+ controlled by ionic radius of added trivalent ion. J. Appl. Phys. 91, 5492 (2002). https://doi.org/10.1063/1.1458050

    Article  ADS  Google Scholar 

  34. D. Makovec, Z. Samardzija, D. Kolar, Solid solubility of cerium in BaTiO3. J. Solid State Chem. 123, 30–38 (1996). https://doi.org/10.1006/jssc.1996.0148

    Article  ADS  Google Scholar 

  35. D.L. Zhang, W.Z. Zhang, J. Gao, P.R. Hua, B. Chen, E. Yue-Bun, Pun, Rare-earth doping, various post-growth heat treatments and aging effects on OH absorption in LiNbO3 crystal. Mater. Chem. Phys. 135, 416–424 (2012). https://doi.org/10.1016/J.MATCHEMPHYS.2012.04.067

    Article  Google Scholar 

  36. K. Momma, F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data, urn:Issn:0021-8898. 44 (2011) 1272–1276. https://doi.org/10.1107/S0021889811038970

  37. M. Niederberger, N. Pinna, J. Polleux, M. Antonietti, A general soft-chemistry route to perovskites and related materials: synthesis of BaTiO3, BaZrO3, and LiNbO3 nanoparticles. Angewandte Chemie - Int. Ed. 43, 2270–2273 (2009). https://doi.org/10.1002/ANIE.200353300

    Article  Google Scholar 

  38. L.O. Svaasand, M. Eriksrud, A.P. Grande, F. Mo, Crystal growth and properties of LiNb3O8. J. Cryst. Growth. 18, 179–184 (1973). https://doi.org/10.1016/0022-0248(73)90197-8

    Article  ADS  Google Scholar 

  39. L.H. da Lacerda, M.A. San-Miguel, S.R. de Lazaro, Surface and morphological studies of LiNbO3: p-type semiconductivity on stoichiometric surfaces. New J. Chem. 45, 16594–16605 (2021). https://doi.org/10.1039/D1NJ02429A

    Article  Google Scholar 

  40. D.F. Dos Santos, L.X. Lovisa, A.A.G. Santiago, M. Siu Li, E. Longo, M.R.D. 1 Bomio, F.V. Motta, Growth mechanism and vibrational and optical properties of SrMoO4: Tb3+, Sm3+ particles: green–orange tunable color. J. Mater. Sci. 55, 8610 (2020)

    Article  ADS  Google Scholar 

  41. N.V. Sidorov, N.A. Teplyakova, O.V. Makarova, M.N. Palatnikov, R.A. Titov, D.V. Manukovskaya, Birukova. Boron influence on defect structure and Properties of Lithium Niobate crystals. Crystals. 11, 458 (2021)

    Article  Google Scholar 

  42. M.Y. Salloum, O.S. Grunsky, A.A. Manshina, A.S. Tver’yanovich, Tver’yanovich, investigation of lithium niobate composition by optical spectroscopy methods. Russ Chem. Bull. 58, 2228–2232 (2009)

    Article  Google Scholar 

  43. T.Volk, M.Wöhlecke. Lithium Niobate. Defects, Photorefraction and Ferroelectric Switching; Springer: Berlin, p. 250 (2008)

  44. M. Yang, S. Long, X. Yang, S. Lin, Y. Zhu, D. Ma, B. Wang, Temperature-dependent and threshold behavior of Sm3+ ions on fluorescence properties of Lithium Niobate single crystals. Materials. 11, 2058 (2018)

    Article  ADS  Google Scholar 

  45. L.X. Lovisa, D.F. Dos Santos, A.A.G. Santiago, M. Siu Li, E. Longo, F.V. Motta, M.R.D. Bomio, Enhanced red emission in Sr(1–x)EuxMo0.5W0.5O4 (x = 0.01, 0.02, 0.04) phosphor and spectroscopic analysis for display applications. J. Mater. Sci. 57, 8634–8647 (2022). https://doi.org/10.1007/S10853-022-07203-X/FIGURES/6

    Article  ADS  Google Scholar 

  46. V. Mishra, M.K. Warshi, A. Sati, A. Kumar, V. Mishra, A. Sagdeo, R. Kumar, P.R. Sagdeo, Diffuse reflectance spectroscopy: an effective tool to probe the defect states in wide band gap semiconducting materials. Mater. Sci. Semicond. Process. 86, 151–156 (2018). https://doi.org/10.1016/J.MSSP.2018.06.025

    Article  Google Scholar 

  47. P. KUBELKA, New Contributions to the Optics of Intensely Light-Scattering Materials. Part I, JOSA, Vol. 38, Issue 5, Pp. 448–457. 38 (1948) 448–457. https://doi.org/10.1364/JOSA.38.000448

  48. C. Spindler, T. Galvani, L. Wirtz, G. Rey, S. Siebentritt, Excitation-intensity dependence of shallow and deep-level photoluminescence transitions in semiconductors. J. Appl. Phys. (2019). https://doi.org/10.1063/1.5095235/595171

  49. L.X. Lovisa, D.F.D. Santos, A.A.G. Santiago, M.S. Li, E. Longo, M.R.D. Bomio, F.V. Motta, SrW(1–x)MoxO4 solid solutions: modulation of structural and photoluminescent properties and white light emission. Opt. Mater. (Amst). (2022). https://doi.org/10.1016/J.OPTMAT.2022.113166

  50. J.M.A. Gilman, A. Hamnett, Franz-Keldysh and band-filling efFects in the electroreflectance of highly doped p-type GaAs. Phys. Rev. B 46, 13363 (1992)

    Article  ADS  Google Scholar 

  51. N.V. Sidorov, T.R. Volk, B.N. Mavrin, V.T. Kalinnikov, Lithium Niobate: Defects, Photorefraction, Vibration Spectra, Nauka: Moscow, Russia, 2003, p. 255

  52. N.V. Sidorov, O.Y. Pikoul, A.A. Kruk, N.A. Teplyakova, A.A. Yanichev, M.N. Palatnikov, Complex investigations of structural and optical homogeneities of low-photorefractivity lithium niobate crystals by the conoscopy and photoinduced and Raman light scattering methods. Opt. Spectrosc. 118, 259 (2015)

    Article  ADS  Google Scholar 

  53. N.V. Sidorov, M.N. Palatnikov, V.T. Kalinnikov, Effect of secondary structure on the optical properties of ferroelectric crystals of lithium niobate with a low photorefraction effect. Proc. Kola Sci. Center RAS Chem. Mater. Sci. 9, 464 (2015)

  54. A. Krampf, S. Messerschmidt, M. Imlau, Superposed picosecond luminescence kinetics in lithium niobate revealed by means of broadband fs-fluorescence upconversion spectroscopy. Sci. Rep. 10, 11397 (2020). https://doi.org/10.1038/s41598‐020‐68376‐6

    Article  Google Scholar 

  55. A.A. Anikiev, N.V. Sidorov, M.N. Palatnikov, M.F. Umarov, E.N. Anikieva, Parametrization of nonstoichiometric lithium niobate crystals with different states of defectivity. Opt. Mater. (Amst). 111, 110729 (2021). https://doi.org/10.1016/J.OPTMAT.2020.110729

    Article  Google Scholar 

  56. S. Kim, V. Gopalan, K. Kitamura, Y. Furukawa, Domain reversal and nonstoichiometry in lithium tantalate. J. Appl. Phys. 90, 2949–2963 (2001). https://doi.org/10.1063/1.1389525

    Article  ADS  Google Scholar 

  57. T.Volk, M. Wöhlecke. Lithium niobate. Lithium niobate: defects, photorefraction and ferroelectric switching (chap. 1). Springer Ser. Mater. Sci. 115, 9–50 (2009). ISSN 0933-033X

  58. G.F. Nataf, M. Guennou, A. Haußmann, N. Barrett, J. Kreisel, Evolution of defect signatures at ferroelectric domain walls in Mg-doped LiNbO3, Physica Status Solidi (RRL) –. Rapid Res. Lett. 10, 222–226 (2016). https://doi.org/10.1002/PSSR.201510303

    Article  Google Scholar 

  59. Y. Li, W.G. Schmidt, S. Sanna, Defect complexes in congruent LiNbO3 and their optical signatures. Phys. Rev. B Condens. Matter Mater. Phys. 91, 174106 (2015). https://doi.org/10.1103/PHYSREVB.91.174106/FIGURES/7/MEDIUM

    Article  ADS  Google Scholar 

  60. A.V. Raik, M.E. Bedrina, Modeling of the process of water adsorption on the surface of crystals. Comput. Sci. Manag Process. 10, 67–75 (2011)

    Google Scholar 

  61. N. Shasmal, B. Karmakar, White light-emitting Dy3+-doped transparent chloroborosilicate glass: synthesis and optical properties. (2018). https://doi.org/10.1080/21870764.2018.1555883

  62. J. Sun, P. Huang, Y. Liu, L. Wang, C. Cui, Q. Shi, Y. Tian, Color-tunable Ca10Na(PO4)7:Ce3+/Tb3+/Mn3+ phosphor via energy transfer. J. Rare Earths. 36, 567–574 (2018). https://doi.org/10.1016/j.jre.2017.11.015

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. X. Lovisa.

Ethics declarations

Conflict of interest

No conflict of interest exists. We wish to confirm that there are no known conflicts of interest associated with this publication.

Authors contribution statement

The contribution of each author is described below: 

L.X. Lovisa: Contribution to the discussion of the results of X-ray diffraction, microscopy and photoluminescence.

T.B.O. Nunes: Article writing. Conceptualization.

E. C. Tavares: Contribution to the discussion of the results and review of the work.

R.C.L. Machado: Carrying out chemical syntheses to obtain the material.

L.F. Dos Santos: Performing photoluminescent measurements.

M.R.D. Bomio: Enabled microscopy measurements, x-ray diffraction analysis and UV-visible spectroscopy.

F.V. Motta: Enabled microscopy measurements, x-ray diffraction analysis and UV-visible spectroscopy.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lovisa, L.X., Nunes, T.B.O., Tavares, E.C. et al. Effects of rare earth ions on structural, morphological and photoluminescent properties of non-stoichiometric LiNbO3. Appl. Phys. A 130, 226 (2024). https://doi.org/10.1007/s00339-024-07399-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-024-07399-6

Keywords

Navigation