Skip to main content
Log in

Ca3TeO6:Er3+, Yb3+ up-conversion phosphors for optical temperature sensor based on FIR technique

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In recent years, the rare earth doped upconversion luminescent materials have been widely used in many fields. In practical applications, we observed that various dopants have distinct effects on different substances to some extent. In this context, we have successfully synthesized a dual-mode-excited Ca3TeO6 double perovskite. After introduce the Yb3+/Er3+ ions pair, the designed phosphor can emit green and red luminescence under 980 nm and 1550 nm excitation, respectively, making it suitable for diverse scientific and technological applications. The potential up-conversion mechanisms driven by different excitation sources have been investigated. Moreover, it was discovered that adjusting the molar ratio of Er3+ and Yb3+ ions enhances the performance of the studied materials, rendering them well-suited for application as a high-quality optical thermometer based on the FIR technique. Our results clearly indicate that Er3+/Yb3+ co-doped Ca3TeO6 phosphors allows for multiple optimizations and control of material properties, showcasing great potential for applications in various field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

The data that support the findings of this study are availablefrom the corresponding author upon reasonable request.

References

  1. F. Auzel, Upconversion and anti-Stokes processes with f and d ions in solids. Chem. Rev. 104, 139–173 (2004)

    CAS  PubMed  Google Scholar 

  2. M.X. Yu, J. Zhou, Y. Sun, X.Z. Zhang, X.J. Zhu, Z.H. Wu, D.M. Wu, F.Y. Li, Fluorine-18-labeled Gd3+/Yb3+/Er3+ co-doped NaYF4 nanophosphors for multimodality PET/MR/UCL imaging. Biomaterials 32, 1148–1156 (2011)

    PubMed  Google Scholar 

  3. C. Liang, K. Yang, S. Zhang, M.W. Shao, S.T. Lee, Z. Liu, Highly-sensitive multiplexed in vivo imaging using PEGylated upconversion nanoparticles. Nano Res. 3, 722–732 (2010)

    ADS  Google Scholar 

  4. C.X. Li, Z.H. Xu, P.A. Ma, Z.Y. Hou, D.M. Yang, X.J. Kang, J. Lin, Facile synthesis of an up-conversion luminescent and mesoporous Gd2O3: Er3+ @nSiO2 @mSiO2 nanocomposite as a drug carrier. Nanoscale 3, 661–667 (2011)

    ADS  PubMed  Google Scholar 

  5. B.C. Wilson, M.S. Patterson, D.R. Wyman, The propagation of optical radiation in tissue. II: Optical properties of tissues and resulting fluence distributions. Laser Med. Sci. 6, 379–390 (1991)

    Google Scholar 

  6. R. Weissleder, S.A. Hilderbrand, Near-infrared fluorescence: application to in vivo molecular imaging. Curr. Opin. Chem. Biol. 14, 71–79 (2010)

    PubMed  Google Scholar 

  7. N. Marcin, R.J. Kumar, T.Y. Ohulchanskyy, E.J. Bergey, P.N. Prasad, High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors. Nano Lett. 8, 3834–3838 (2008)

    ADS  Google Scholar 

  8. F.Y. Li, M.X. Yu, Z.G. Chen, H. Hu, C. Zhan, H. Yang, C.H. Huang, Laser scanning up-conversion luminescence microscopy for imaging cells labeled with rare-earth nanophosphors. Anal. Chem. 81, 930–935 (2009)

    PubMed  Google Scholar 

  9. D. Gao, B.J. Chen, X.Z. Sha, Y.H. Zhang, X. Chen, L. Wang, X.Z. Zhang, J.S. Zhang, Y.Z. Cao, Y.C. Wang, L. Li, X.P. Li, S. Xu, H.Q. Yu, L.H. Cheng, Near infrared emissions from both high efficient quantum cutting (173%) and nearly-pure-color upconversion in NaY(WO4)2:Er3+/Yb3+ with thermal management capability for silicon-based solar cells. Light Sci. Appl. 13, 17 (2024)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. J. Cao, X. Li, Z. Wang, Y. Wei, L. Chen, H. Guo, Optical thermometry based on up-conversion luminescence behavior of self-crystallized K3YF6:Er3+ glass ceramics. Sensor Actuat. B Chem. 224, 507–513 (2016)

    CAS  Google Scholar 

  11. Y.X. Luo, Y. Chen, L.J. Li, J.Y. Chen, T. Pang, L.P. Chen, H. Guo, Three-mode fluorescence thermometers based on double perovskite Ba2GdNbO6:Eu3+, Mn4+ phosphors. Ceram. Inter. 49, 38007–38014 (2023)

    CAS  Google Scholar 

  12. W.J. Huang, J.H. Lei, Y.H. Chen, J.Y. Chen, Y. Li, L.P. Chen, H. Guo, Luminescence and temperature sensing properties of Dy3+-doped YPO4 glass ceramic. Ceram. Inter. 49, 9799–9805 (2023)

    CAS  Google Scholar 

  13. J.Q. Chen, J.Y. Chen, W.N. Zhang, S.J. Xu, L.P. Chen, H. Guo, Three-mode optical thermometer based on Ca3LiMgV3O12:Sm3+ phosphors. Ceram. Inter. 49, 16252–16259 (2023)

    CAS  Google Scholar 

  14. J.Y. Chen, J.Q. Chen, L.J. Li, W.N. Zhang, L.P. Chen, H. Guo, A four-mode high-sensitive optical thermometer based on Ca3LiZnV3O12:Sm3+ phosphors. Mater. Today Chem. 29, 101409 (2023)

    CAS  Google Scholar 

  15. J.A. Baglio, S. Natansohn, The crystal structure of Ca3TeO6 and Ca3WO6. J. Appl. Crystallogr. 2, 252–254 (1969)

    ADS  CAS  Google Scholar 

  16. L.X. Pang, D. Zhou, Ca3WO6: a novel microwave dielectric ceramic with complex perovskite structure. J. Mater. Sci. Mater. Electron. 22, 807–810 (2011)

    CAS  Google Scholar 

  17. X. Zhao, J.J. Wang, L. Fan, Y. Ding, Z. Li, T. Yu, Z. Zou, Efficient red phosphor double-perovskite Ca3WO6 with A-site substitution of Eu3+. Dalton Trans. 42, 13502–13508 (2013)

    CAS  PubMed  Google Scholar 

  18. G.H. Zhu, Y. Huang, C. Wang, L.X. Lu, T.M. Sun, M. Wang, Y.F. Tang, D.D. Shan, S.J. Wen, J.L. Zhu, A novel coumarin-based fluorescence chemosensor for Al3+ and its application in cell imaging. Spectrochim. Acta A 210, 105–110 (2019)

    ADS  CAS  Google Scholar 

  19. B. Yang, J. Xu, H.L. Zhu, Recent progress in the small-molecule fluorescent probes for the detection of sulfur dioxide derivatives (HSO3-/SO32-). Free Radic. Biol. Med. 145, 42–60 (2019)

    CAS  PubMed  Google Scholar 

  20. W. Yurong, Z. Dandan, W. Yang, Y. Hao, Y. Wei, D. Ying, G. Haiying, F. Xia, L. Ling, D. Hong, Synthesis and bioactivities of novel pyrazole oxime ethers containing 1,2,4-triazole moiety. Chin. J. Org. Chem. 39, 2053–2061 (2019)

    Google Scholar 

  21. B. Manoun, Y. Tamraoui, P. Lazor, W. Yang, Phase transitions in heated Sr2MgTeO6 double perovskite oxide probed by X-ray diffraction and Raman spectroscopy. Appl. Phys. Lett. 103, 261908 (2013)

    ADS  Google Scholar 

  22. A. Dias, G. Subodh, M.T. Sebastianb, R.L. Moreira, Vibrational spectroscopic study of Sr2ZnTeO6 double perovskites. J. Raman Spectrosc. 41, 702–706 (2010)

    ADS  CAS  Google Scholar 

  23. Q. Zhou, B.J. Kennedy, M.M. Elcombe, Composition and temperature dependent phase transitions in Co–W double perovskites, a synchrotron X-ray and neutron powder diffraction study. J. Solid State Chem. 180, 541–548 (2007)

    ADS  CAS  Google Scholar 

  24. H. Wang, T. Jiang, M.M. Xing, Y. Fu, Y. Peng, X.X. Luo, K3LaTe2O9:Er:a novel green up-conversion luminescence material. RSC Adv. 7, 36374–36381 (2017)

    ADS  CAS  Google Scholar 

  25. H. Suo, C.F. Guo, T. Li, Broad-scope thermometry based on dual-color modulation up-conversion phosphor Ba5Gd8Zn4O21:Er3+/Yb3+. J. Phys. Chem. C. 120, 2914–2924 (2016)

    CAS  Google Scholar 

  26. R.V. Perrella, I.C. Ribeiro, P.H.A. Campos-Junior, M.A. Schiavon, E. Pecoraro, S.J.L. Ribeiro, J.L. Ferrari, CaTiO3:Er3+:Yb3+ upconversion from 980 nm to 1550 nm excitation and its potential as cells luminescent probes. Mater. Chem. Phys. 223, 391–397 (2019)

    CAS  Google Scholar 

  27. Y. Lou, Y. Chen, Z.M. Gu, Q. Qiu, C.J. Shi, L. He, Y.B. Xing, J.G. Peng, H.Q. Li, Y.B. Chu, J.Y. Li, N.L. Dai, Er3+/Ce3+Co-doped phosphosilicate fiber for extend the L-band amplification. J. Light. Technol. 39, 5933–5938 (2021)

    ADS  CAS  Google Scholar 

  28. J. Fu, X. Hu, F. Luan, G. Li, D. Guo, Optimum synthesis and properties of NaBiF4:Yb/Er upconversion particles. Ceram. Int. 45, 24365–24374 (2019)

    CAS  Google Scholar 

  29. D. Shao, L. Lu, H. Sun, X. Zhang, Z. Bai, X. Mi, Analysis of influencing factors and changing laws on fluorescence lifetime of Er3+, Yb3+ Co-doped Gd2O2S phosphor. J. Lumin. 252, 119377 (2022)

    CAS  Google Scholar 

  30. D. He, C.F. Guo, S. Jiang, N.M. Zhang, C.K. Duan, M. Yin, T. Li, Optical temperature sensing properties of Yb3+-Er3+ co-doped NaLnTiO4 (Ln = Gd, Y) up-conversion phosphors. RSC Adv. 5, 1385–1390 (2015)

    ADS  CAS  Google Scholar 

  31. C.D.S. Brites, X.J. Xie, M.L. Debasu, X. Qin, R.F. Chen, W. Huang, J. Rocha, X.G. Liu, L.D. Carlos, Instantaneous ballistic velocity of suspended Brownian nanocrystals measured by upconversion nanothermometry. Nat. Technol. 11, 851–856 (2016)

    CAS  Google Scholar 

  32. G.Y. Zhang, Q.P. Qiang, S.S. Du, Y.H. Wang, An upconversion luminescence and temperature sensor based on Yb3+/Er3+ co-doped GdSr2AlO5. RSC Adv. 8, 9512–9518 (2018)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  33. W. Yu, W. Xu, H.W. Song, S. Zhang, Temperature-dependent upconversion luminescence and dynamics of NaYF4:Yb3+/Er3+ nanocrystals: influence of particle size and crystalline phase. Dalton Trans. 43, 6139–6147 (2014)

    CAS  PubMed  Google Scholar 

  34. J. Zhang, B.W. Ji, G.B. Chen, Z.H. Hua, Upconversion luminescence and discussion of sensitivity improvement for optical temperature sensing application. Inorg. Chem. 57, 5038–5047 (2018)

    CAS  PubMed  Google Scholar 

  35. J. Zhang, X.M. Jiang, Z.H. Hua, Investigation on upconversion luminescence and optical temperature sensing behavior for Ba2Gd2Si4O13:Yb3+-Er3+/Ho3+/Tm3+ phosphors. Ind. Eng. Chem. Res. 57, 7507–7515 (2018)

    CAS  Google Scholar 

  36. P. Li, L.N. Guo, C.X. Liang, T.S. Li, P.L. Chen, M.H. Liu, Y.J. Wu, Effects of optical-inert ions on upconversion luminescence and temperature sensing properties of ScVO4:10%Yb3+/2%Er3+ nano/micro-particles. RSC Adv. 7, 51233–51244 (2017)

    ADS  CAS  Google Scholar 

  37. S.S. Peng, F.Q. Lai, Z.L. Xiao, H. Cheng, Z. Jiang, W.X. You, Upconversion luminescence and temperature sensing properties of Er3+/Yb3+ doped double-perovskite Ba2LaNbO6 phosphor. J. Lumin. 242, 118569 (2021)

    Google Scholar 

  38. H. Zou, X.S. Wang, Y.F. Hu, X.Q. Zhu, Y.X. Sui, Z.T. Song, Optical temperature sensor through upconversion emission from the Er3+ doped SrBi8Ti7O27 ferroelectrics. J. Electron. Mater. 45, 2745–2749 (2016)

    ADS  CAS  Google Scholar 

  39. J. Zhang, J.J. Chen, Y.N. Zhang, Temperature-sensing luminescent materials La9.67Si6O26.5:Yb3+-Er3+/Ho3+ based on pump-power-dependent upconversion luminescence. Inorg. Chem. Front. 7, 4892–4901 (2020)

    CAS  Google Scholar 

  40. Y.Z. Wang, C.D. Zuo, C.Y. Ma, W.G. Ye, C. Zhao, Z. Feng, Y.B. Li, Z.C. Wen, C. Wang, X.F. Shen, X.Y. Yuan, Y.G. Cao, Effects of Sc3+ ions on local crystal structure and up-conversion luminescence of layered perovskite NaYTiO4: Yb3+/Er3+. J. Alloys Compd. 876, 160166 (2021)

    CAS  Google Scholar 

  41. P.P. Du, X.D. Sun, Q. Zhu, J.G. Li, Garnet-structured Li6CaLa2Nb2O12:Yb/Er new phosphor showing superior performance of optical thermometry. Scripta Mater. 185, 140–145 (2020)

    CAS  Google Scholar 

  42. J. Zhang, Y. Chen, G.B. Chen, Investigation of dopant concentration and excitation power on sensitivities of Y4.67(SiO4)3O:Yb3+, Er3+ upconversion phosphors for optical thermometer. Opt. Laser Technol. 120, 105747 (2019)

    CAS  Google Scholar 

  43. Y. Fan, Q. Xiao, X.M. Yin, L. Lv, X.Y. Wu, X.Y. Dong, M.M. Xing, Y. Tian, X.X. Luo, Upconversion luminescence and optical temperature sensing of Er3+-doped La2Mo2O9 phosphors under 980 and 1550 nm excitation. Solid State Sci. 132, 106966 (2022)

    CAS  Google Scholar 

  44. S.Y. Liu, D. Gao, L. Wang, W.B. Song, Y. Zhu, P.J. Xiao, W.J. Zheng, J. Huang, Anti-Counterfeiting application and temperature sensing characteristics of SrBi4Ti4O15:Yb3+/Er3+ phosphor designed by solid state method for dual-mode upconversion luminescence. Russ. Phys. J. 66, 12 (2023)

    Google Scholar 

  45. Y.G. Su, D. Han, C.F. Du, L.M. Peng, L. Lv, X.J. Wang, Facile synthesis and enhanced near infrared luminescent properties of CaWO4:Ln3+/Na+ (Ln = Nd, Er, and Yb)core/shell microstructure. J. Nanosci. Nanotechnol. 14, 3948–3952 (2014)

    CAS  PubMed  Google Scholar 

  46. M.S. Yang, J.J. Ren, R.L. Zhang, Preparation, upconversion luminescence, and solid-state NMR studies of water-soluble hexagonal NaScF4:Yb/Er microcrystals. J. Alloys Compd. 714, 160–167 (2017)

    CAS  Google Scholar 

  47. L.T.K. Giang, K. Trejgis, L. Marciniak, N. Vu, L.Q. Minh, Fabrication and characterization of up-converting β-NaYF4:Er3+, Yb3+@NaYF4 core–shell nanoparticles for temperature sensing applications. Sci. Rep. 10, 14672 (2020)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  48. L. Li, Y.Z. Cao, H.Q. Cui, Y.H. Zhang, G.J. Li, Y.C. Wang, X.P. Li, S. Xu, B.J. Chen, Upconversion luminescence color modulation and temperature sensing of Na0.5Bi2.5Nb2−xTaxO9:Er3+/Yb3+ phosphors. J. Am. Ceram. Soc. 11, 105–111 (2022)

    Google Scholar 

  49. T.Z. Xiao, W.Z. Ren, Y.H. Peng, T.H. Wang, J.J. Han, J.C. Peng, J.B. Qiu, Z.W. Yang, Z.G. Song, Modification photon avalanche emission of BiOCl: Er3+ nanosheets through facile solvent-thermal synthesis. Inorg Chem Commun. 117, 107934 (2020)

    CAS  Google Scholar 

  50. Y. Tian, F. Lu, M.M. Xing, J.C. Ran, Y. Fu, Y. Peng, X.X. Luo, Upconversion luminescence properties of Y2O2S:Er3+@Y2O2S:Yb3+, Tm3+ core-shell nanoparticles prepared via homogeneous co-precipitation. Opt. Mater. 64, 58–63 (2017)

    ADS  CAS  Google Scholar 

  51. Q. Wang, M. Liao, Q. Lin, A review on fluorescence intensity ratio thermometer based on rare-earth and transition metal ions doped inorganic luminescent materials. J. Alloys Compd. 850, 156744–156758 (2020)

    Google Scholar 

  52. M. Dramicanin, Trends in luminescence thermometry. J. Appl. Phys. 128, 040902 (2020)

    ADS  CAS  Google Scholar 

  53. Y.X. Zhou, D.D. Yin, S.C. Zheng, S.X. Peng, Y.W. Qi, F. Chen, G.B. Yang, Improvement of 1.53 lm emission and energy transfer of Yb3+/Er3+ co-doped tellurite glass and fiber. Opt. Fiber Technol. 19, 507–513 (2023)

    ADS  Google Scholar 

  54. M.A. Hahn, A.K. Singh, P. Sharma, S.C. Brown, B.M. Moudgil, Nanoparticles as contrast agents for in-vivo bioimaging: current status and future perspective. Anal Bioanal Chem. 399, 3–27 (2011)

    CAS  PubMed  Google Scholar 

  55. R.E. Newnham, J.F. Dorrian, E.P. Meagher, Crystal structure of Mg3TeO6. Mat. Res. Bull. 5, 199–202 (1970)

    CAS  Google Scholar 

  56. P.C. Pina, H. Arriola, N. Guzma, Synthesis of calcium telluride as a possible mossbauer source. Hyperfine Interact. 161, 123–126 (2005)

    ADS  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by Funds supported by the National Natural Science Foundation of China (approval number: 52201065)

Author information

Authors and Affiliations

Authors

Contributions

SL: Methodology (lead); Writing—original draft (lead). DG: Data curation (equal); Resources (equal). LW: Methodology (equal). WS: Data curation (lead); Validation (lead). Visualization (equal). ZZ: Project administration (equal); Resources (equal). YZ: Investigation (equal); Project administration (equal). PX: Investigation (equal); Project administration (equal). JH: Investigation (equal); Project administration (equal). WZ: Data curation (equal); Resources(equal). SY: Data curation (equal); Resources (equal).

Corresponding author

Correspondence to Shengyi Liu.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Gao, D., Wang, L. et al. Ca3TeO6:Er3+, Yb3+ up-conversion phosphors for optical temperature sensor based on FIR technique. Appl. Phys. A 130, 210 (2024). https://doi.org/10.1007/s00339-024-07376-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-024-07376-z

Keywords

Navigation