Skip to main content
Log in

Atomistic explanation of compression-induced deformation mechanisms in boron carbide

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The compression-induced deformation mechanisms of boron carbide (B4C) have not been well understood due to its complex crystal structure. Here, we investigate the mechanical behaviors and deformation mechanisms of B4C under various compression conditions, using molecular dynamics simulations with a machine-learning force field. Two structural transitions in B4C under bulk compression are identified: the formation of new chains–icosahedra bonds, and icosahedral deconstruction. The former triggers the “pop-in” event observed in the nanoindentation experiments due to chain bending, while the latter facilitates icosahedral sliding and amorphization. Furthermore, the results reveal a mechanism involving an intermediate structure characterized by the development of new chains–icosahedra bonds across the entire model, followed by the amorphization process. This mechanism induced by increased stress in icosahedra due to the new chains–icosahedra bond formation plays an important role in significantly improving the strength and ductility of B4C. In contrast, B4C with free surfaces or nanopores exhibits a direct transformation from chain bending to icosahedral deconstruction without the intermediate structure formation, consequently reducing strength and ductility. However, this intermediate configuration is not stable and maintained only under stress, because structural recovery within non-amorphized regions occurs after amorphization under quasi-static compression with a relaxed stress state. This study provides a thorough understanding of the deformation behaviors and mechanisms of B4C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. V. Domnich, S. Reynaud, R.A. Haber, M. Chhowalla, J. Am. Ceram. Soc. 94, 3605–3628 (2011)

    Google Scholar 

  2. F. Thévenot, J. Eur. Ceram. Soc. 6, 205–225 (1990)

    Google Scholar 

  3. A. Awasthi, G. Subhash, Prog. Mater. Sci. 112, 100664 (2020)

    Google Scholar 

  4. M. Chen, J.W. McCauley, K.J. Hemker, Science 299, 1563–1566 (2003)

    ADS  PubMed  Google Scholar 

  5. K.M. Reddy, P. Liu, A. Hirata, T. Fujita, M.W. Chen, Nat. Commun. 4, 2483 (2013)

    ADS  PubMed  Google Scholar 

  6. K.M. Reddy, D. Guo, S. Song, C. Cheng, J. Han, X. Wang, Q. An, M. Chen, Sci. Adv. 7, 6714 (2021)

    ADS  Google Scholar 

  7. D. Ge, V. Domnich, T. Juliano, E.A. Stach, Y. Gogotsi, Acta Mater. 52, 3921–3927 (2004)

    ADS  Google Scholar 

  8. B.M.L. Koch, H. Li, C. Lo, J. Ligda, J.D. Hogan, J. Eur. Ceram. Soc. 42, 5522–5537 (2022)

    Google Scholar 

  9. L. Feng, W. Li, E.N. Hahn, P.S. Branicio, X. Zhang, X. Yao, Mech. Mater. 164, 104139 (2022)

    Google Scholar 

  10. X.Q. Yan, Z. Tang, L. Zhang, J.J. Guo, C.Q. Jin, Y. Zhang, T. Goto, J.W. McCauley, M.W. Chen, Phys. Rev. Lett. 102, 075505 (2009)

    ADS  PubMed  Google Scholar 

  11. J. Venkatesan, M.A. Iqbal, V. Madhu, Thin Walled Struct. 154, 106785 (2020)

    Google Scholar 

  12. M. Salavati, H. Ghasemi, T. Rabczuk, Comput. Mater. Sci. 149, 460–465 (2018)

    Google Scholar 

  13. H. Ghasemi, Front. Struct. Civ. Eng. 15, 1292–1299 (2021)

    Google Scholar 

  14. J.D. Hogan, L. Farbaniec, T. Sano, M. Shaeffer, K.T. Ramesh, Acta Mater. 102, 263–272 (2016)

    ADS  Google Scholar 

  15. J.D. Hogan, L. Farbaniec, M. Shaeffer, K.T. Ramesh, J. Am. Ceram. Soc. 98, 902–912 (2015)

    Google Scholar 

  16. Q. An, W.A. Goddard, Phys. Rev. Lett. 115, 105501 (2015)

    ADS  PubMed  Google Scholar 

  17. Q. An, W. Goddard, T. Cheng, Phys. Rev. Lett. 113, 095501 (2014)

    ADS  PubMed  Google Scholar 

  18. Y. Shen, K.M. Reddy, J. Li, M. Chen, Q. An, Acta Mater. 249, 118828 (2023)

    Google Scholar 

  19. M. Chen, E. Ma, K.J. Hemker, H. Sheng, Y. Wang, X. Cheng, Science 300, 1275–1277 (2003)

    ADS  PubMed  Google Scholar 

  20. J. Li, H. Chen, Q. Fang, C. Jiang, Y. Liu, P.K. Liaw, Int. J. Plast. 133, 102819 (2020)

    Google Scholar 

  21. H. Zhang, A. Pan, R. Hei, P. Liu, Appl. Phys. A Mater. Sci. Process. 127, 1–7 (2021)

    ADS  Google Scholar 

  22. S. Zhao, B. Kad, B.A. Remington, J.C. Lasalvia, C.E. Wehrenberg, K.D. Behler, M.A. Meyers, Proc. Natl. Acad. Sci. U.S.A. 113, 12088–12093 (2016)

    ADS  PubMed  PubMed Central  Google Scholar 

  23. S. Zhao, B. Li, B.A. Remington, C.E. Wehrenberg, H.S. Park, E.N. Hahn, M.A. Meyers, Mater. Today 49, 59–67 (2021)

    Google Scholar 

  24. S. Zhao, R. Flanagan, E.N. Hahn, B. Kad, B.A. Remington, C.E. Wehrenberg, R. Cauble, K. More, M.A. Meyers, Acta Mater. 158, 206–213 (2018)

    ADS  Google Scholar 

  25. C. Jiang, M.J. Zheng, D. Morgan, I. Szlufarska, Phys. Rev. Lett. 111, 155501 (2013)

    ADS  PubMed  Google Scholar 

  26. Z. Wu, W. Liu, L. Zhang, S. Lim, Acta Mater. 182, 60–67 (2020)

    ADS  Google Scholar 

  27. J. Li, K. Luo, Q. An, Phys. Rev. Lett. 130, 116104 (2023)

    ADS  PubMed  Google Scholar 

  28. J. Li, Q. An, Int. J. Mech. Sci. 242, 107998 (2023)

    Google Scholar 

  29. D.C.E. Taylor, J. Am. Ceram. Soc. 98, 3308–3318 (2015)

    Google Scholar 

  30. G. Fanchini, J.W. McCauley, M. Chhowalla, Phys. Rev. Lett. 97, 035502 (2006)

    ADS  PubMed  Google Scholar 

  31. S. Aryal, P. Rulis, W.Y. Ching, Phys. Rev. B 84, 184112 (2011)

    ADS  Google Scholar 

  32. S. Meille, M. Lombardi, J. Chevalier, L. Montanaro, Comput. Mater. Sci. 121, 106–112 (2016)

    Google Scholar 

  33. J. Li, S. Xu, L. Liu, Z. Wang, J. Zhang, Q. Liu, Mater. Res. Express 5, 055204 (2018)

    ADS  Google Scholar 

  34. P. Korotaev, P. Pokatashkin, A. Yanilkin, Model. Simul. Mater. Sci. Eng. 24, 015004 (2015)

    ADS  Google Scholar 

  35. X. Li, L. Liu, H. Mei, S. Xu, J. Li, J. Zhang, Comput. Mater. Sci. 199, 110708 (2021)

    Google Scholar 

  36. A.A. Cheenady, A. Awasthi, M. Devries, C. Haines, G. Subhash, Phys. Rev. B 104, 184110 (2021)

    ADS  Google Scholar 

  37. X. Li, X. Yang, H. Mei, L. Liu, S. Xu, J. Zhang, Comput. Mater. Sci. 214, 111746 (2022)

    Google Scholar 

  38. M. Xiang, J. Cui, Y. Yang, Y. Liao, K. Wang, Y. Chen, J. Chen, Int. J. Plast. 97, 24–45 (2017)

    Google Scholar 

  39. Z. Chen, X. Zhang, W. Li, X. Yao, Int. J. Mech. Sci. 224, 107320 (2022)

    Google Scholar 

  40. J. Kimberley, K.T. Ramesh, N.P. Daphalapurkar, Acta Mater. 61, 3509–3521 (2013)

    ADS  Google Scholar 

  41. J. Li, L. Liu, S. Xu, J. Zhang, W. She, Appl. Phys. A Mater. Sci. Process. 125, 1–10 (2019)

    ADS  Google Scholar 

  42. D.E. Taylor, J.W. McCauley, T.W. Wright, J. Phys. Condens. Matter 24, 505402 (2012)

    PubMed  Google Scholar 

  43. A. Chauhan, M.C. Schaefer, R.A. Haber, K.J. Hemker, Acta Mater. 181, 207–215 (2019)

    ADS  Google Scholar 

  44. S. Meille, M. Lombardi, J. Chevalier, L. Montanaro, J. Eur. Ceram. Soc. 32, 3959–3967 (2012)

    Google Scholar 

  45. G. Hu, K.T. Ramesh, B. Cao, J.W. McCauley, J. Mech. Phys. Solids 59, 1076–1093 (2011)

    ADS  Google Scholar 

  46. S. Nemat-Nasser, H. Deng, Acta Metall. Mater. 42, 1013–1024 (1994)

    Google Scholar 

  47. J. Zheng, M. Ji, Z. Zaiemyekeh, H. Li, J.D. Hogan, J. Eur. Ceram. Soc. 42, 7516–7527 (2022)

    Google Scholar 

  48. B. Paliwal, K.T. Ramesh, Scr. Mater. 57, 481–484 (2007)

    Google Scholar 

  49. D. Ghosh, G. Subhash, J.Q. Zheng, V. Halls, J. Appl. Phys. 111, 063523 (2012)

    ADS  Google Scholar 

  50. J. Pittari, G. Subhash, J. Zheng, V. Halls, P. Jannotti, J. Eur. Ceram. Soc. 35, 4411–4422 (2015)

    Google Scholar 

  51. S. Plimpton, J. Comput. Phys. 117, 1–19 (1995)

    ADS  Google Scholar 

  52. A. Stukowski, Model. Simul. Mater. Sci. Eng. 18, 015012 (2010)

    ADS  Google Scholar 

  53. Q. An, Phys. Rev. Mater. 5, 103602 (2021)

    Google Scholar 

  54. J. Li, Q. An, J. Eur. Ceram. Soc. 43, 208–216 (2023)

    Google Scholar 

  55. H. Wang, L. Zhang, J. Han, Comput. Phys. Commun. 228, 178–184 (2018)

    ADS  Google Scholar 

  56. W. Li, E.N. Hahn, P.S. Branicio, X. Yao, X. Zhang, B. Feng, T.C. Germann, Int. J. Plast. 138, 102923 (2021)

    Google Scholar 

  57. Q. Zhu, J.L. Shao, P. Wang, J. Nucl. Mater. 574, 154200 (2023)

    Google Scholar 

  58. K.J. Mcclellan, F. Chu, J.M. Roper, I. Shindo, J. Mater. Sci. 36, 3403–3407 (2001)

    ADS  Google Scholar 

  59. G. Parsard, G. Subhash, P. Jannotti, J. Am. Ceram. Soc. 101, 2606–2615 (2018)

    Google Scholar 

  60. F.D. Murnaghan, Proc. Natl. Acad. Sci. 30, 244–247 (1944)

    ADS  PubMed  PubMed Central  Google Scholar 

  61. Y. Zhang, T. Mashimo, Y. Uemura, M. Uchino, M. Kodama, K. Shibata, K. Fukuoka, M. Kikuchi, T. Kobayashi, T. Sekine, J. Appl. Phys. 100, 113536 (2006)

    ADS  Google Scholar 

  62. A. Zare, M.R. He, M. Straker, M.V.S. Chandrashekhare, M. Spencer, K.J. Hemker, J.W. McCauley, K.T. Ramesh, J. Am. Ceram. Soc. 105, 3030–3042 (2022)

    Google Scholar 

  63. A.M. Molodets, A.A. Golyshev, D.V. Shakhrai, J. Exp. Theor. Phys. 124, 469–475 (2017)

    ADS  Google Scholar 

  64. H.C. Çekil, M. Özdemir, Comput. Mater. Sci. 201, 110872 (2022)

    Google Scholar 

  65. V.M. Segal, Mater. Sci. Eng. A 338, 331–334 (2002)

    Google Scholar 

  66. Q. Yang, C.J. Marvel, Y. Shen, M.R. He, J. Du, C. Hwang, E.D. Gronske, K.Y. Xie, S.R. Mercurio, Q. An, M.P. Harmer, K.J. Hemker, R.A. Haber, Acta Mater. 241, 118412 (2022)

    Google Scholar 

  67. K. Madhav Reddy, J.J. Guo, Y. Shinoda, T. Fujita, A. Hirata, J.P. Singh, J.W. McCauley, M.W. Chen, Nat. Commun. 3, 1052 (2012)

    ADS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support from the National Natural Science Foundation of China (Grant no. 11972267).

Author information

Authors and Affiliations

Authors

Contributions

ZY: conceptualization, methodology, software, validation, formal analysis, investigation, visualization, writing—original draft, writing—review and editing. JL: supervision, investigation, writing—review and editing. LL: conceptualization, methodology, supervision, and funding acquisition. HM: conceptualization, supervision, and visualization.

Corresponding authors

Correspondence to Jun Li or Lisheng Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 702 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yue, Z., Li, J., Liu, L. et al. Atomistic explanation of compression-induced deformation mechanisms in boron carbide. Appl. Phys. A 130, 187 (2024). https://doi.org/10.1007/s00339-024-07348-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-024-07348-3

Keywords

Navigation