Skip to main content
Log in

Optical and spectroscopic studies on Eu3+ doped LCBB glasses for photonic device applications

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Herein we report the optical and spectroscopic properties of lithium–calcium–bismuth–borate (LCBB) glasses containing Eu3+ prepared via the melt-quenching method, and the prepared samples were systematically characterised through X-ray diffraction (XRD), Raman, ultraviolet–visible–near-infrared (UV–Vis-NIR) and photoluminescence (PL) spectroscopic techniques. The absence of XRD peaks evidenced the amorphous nature of glass. Different borate functional groups were identified from Raman spectra. Urbach energy and radiative properties were evaluated from the UV–Vis–NIR absorption spectra. The phonon energy of the glass samples was estimated by considering the energy differences between the zero-phonon level (ZPL) and phonon side bands (PSBs) present in excitation spectra. Judd–Ofelt (JO) parameters have been evaluated from the luminescence intensity ratios of 5D0 → 7FJ (J = 2, 4) to 5D0 → 7F1 transitions. These parameters have been used to derive radiative properties such as transition probabilities, branching ratios, radiative lifetimes and peak stimulated emission cross-sections for the 5D0 → 7FJ transitions. The JO results and the lifetime decay studies showed that LCBBEu2 glass exhibits higher stimulated cross-section (16.74 × 10–22 cm2) and quantum efficiency (67.80%), which is highest among the reported by other research groups. Also, the LCBB doped with Eu3+ glasses exhibit strong emission in the red region, making them potential candidates for photonic device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Research data is not available in the manuscript and it will be available from the corresponding author upon reasonable request.

References

  1. I. Khan, G. Rooh, R. Rajaramakrishna, N. Sirsittipokakun, H.J. Kim, C. Wongdeeying, J. Kaewkhao, J. Lumin. 203, 515 (2018)

    Google Scholar 

  2. C.R. Kesavulu, H.J. Kim, S.W. Lee, J. Kaewkhao, E. Kaewnuam, N. Wantana, J. Alloys Compd. 704, 557 (2017)

    Google Scholar 

  3. S. Keenatampalle, N. Rama Devi, K. Vijayalakshmi, N.S. Abd EL-Gawaad, L.O. Mallasiy, B. Muni Sudhakar, N. Manohar Reddy, Phys. B Condens. Matter 666, 415109 (2023)

    Google Scholar 

  4. M.V. Vijaya Kumar, B.C. Jamalaiah, K. Rama Gopal, R.R. Reddy, J. Solid State Chem. 184, 2145 (2011)

    ADS  Google Scholar 

  5. M. Rajesh, G.R. Reddy, N.J. Sushma, G. Devarajulu, B.D.P. Raju, Opt. Mater. (Amst.). 107, 110038 (2020)

    Google Scholar 

  6. A. Madhu, N. Srinatha, Infrared Phys. Technol. 107, 103300 (2020)

    Google Scholar 

  7. A. Madhu, N. Srinatha, B. Munisudhakar, Mater. Res. Express 6, 125212 (2020)

    Google Scholar 

  8. S. Hemalatha, M. Nagaraja, A. Madhu, N. Srinatha, Results Opt. 9, 100275 (2022)

    Google Scholar 

  9. S. Hemalatha, M. Nagaraja, A. Madhu, K. Suresh, N. Srinatha, J. Non Cryst. Solids 554, 120602 (2021)

    Google Scholar 

  10. A. Madhu, B. Eraiah, P. Manasa, C. Basavapoornima, J. Non Cryst. Solids 495, 35 (2018)

    ADS  Google Scholar 

  11. J.T. James, J.K. Jose, M. Manjunatha, K. Suresh, A. Madhu, Ceram. Int. 46, 27099 (2020)

    Google Scholar 

  12. A. Madhu, N.S.A. EL-Gawaad, S.A.O. Abdallah, S.T. Dadami, B.G. Hegde, T. Uthayakumar, K. Kumar M B, N. Srinatha, Ceram. Int. 49, 28781 (2023)

  13. A. Madhu, S.A. Idris, N.S.A. El-Gawaad, V.B. Tangod, N. Srinatha, J. Mol. Struct. 1294, 136445 (2023)

    Google Scholar 

  14. G. Chandrashekaraiah, A. Jayasheelan, M. Gowri, N. Sivasankara Reddy, C. Narayana Reddy, J. Non Cryst. Solids 531, 119843 (2020)

    Google Scholar 

  15. G. Chandrashekaraiah, N. Sivasankara Reddy, B. Sujatha, R. Viswanatha, C. Narayana Reddy, J. Non Cryst. Solids 498, 252 (2018)

    ADS  Google Scholar 

  16. H.M. Gomaa, H.A. Saudi, S.M. Elkatlawy, I.S. Yahia, B.M.A. Makram, H.Y. Zahran, Appl. Phys. A 129, 322 (2023)

    ADS  Google Scholar 

  17. A.R. Ghazy, B.M. Elmowafy, A.M. Abdelghany, T.M. Meaz, R. Ghazy, R.M. Ramadan, Sci. Rep. 13, 7292 (2023)

    ADS  PubMed  PubMed Central  Google Scholar 

  18. R. Bajaj, A.S. Rao, G.V. Prakash, J. Non Cryst. Solids 575, 121184 (2022)

    Google Scholar 

  19. G. Novajra, N.G. Boetti, J. Lousteau, S. Fiorilli, D. Milanese, C. Vitale-Brovarone, Mater. Sci. Eng. C 67, 570 (2016)

    Google Scholar 

  20. D. Ramachari, L. Rama Moorthy, C.K. Jayasankar, J. Lumin. 143, 674 (2013)

    Google Scholar 

  21. V. Dua, S.K. Arya, K. Singh, J. Mater. Sci. 58, 8678 (2023)

    Google Scholar 

  22. B. Topper, D. Möncke, R.E. Youngman, C. Valvi, E.I. Kamitsos, C.P.E. Varsamis, Phys. Chem. Chem. Phys. 25, 5967 (2023)

    PubMed  Google Scholar 

  23. E. Ilik, Appl. Phys. A 128, 496 (2022)

    ADS  Google Scholar 

  24. H.A. Thabit, A.K. Ismail, M.I. Sayyed, H. Es-soufi, Ceram. Int. 49, 26505 (2023)

    Google Scholar 

  25. A.A. Ali, A.M. Fathi, S. Ibrahim, Appl. Phys. A 129, 299 (2023)

    ADS  Google Scholar 

  26. J. Ahlawat, S. Pawaria, N. Deopa, S. Dahiya, R. Punia, A.S. Maan, Appl. Phys. A 128, 923 (2022)

    ADS  Google Scholar 

  27. B. Kościelska, M. Walas, T. Lewandowski, M. Łapiński, M. Dębowski, A. Synak, A. Kłonkowski, W. Sadowski, I. Bylińska, W. Wiczk, J. Non Cryst. Solids 462, 41 (2017)

    ADS  Google Scholar 

  28. S. Ravangvong, N. Chanthima, R. Rajaramakrishna, H.J. Kim, J. Kaewkhao, J. Lumin. 219, 116950 (2020)

    Google Scholar 

  29. N.A.S. Omar, Y.W. Fen, K.A. Matori, M.H.M. Zaid, N.F. Samsudin, Results Phys. 6, 640 (2016)

    ADS  Google Scholar 

  30. M. Chen, R. Liu, D. Wang, Y. Zhou, F. Zeng, Z. Su, J. Non Cryst. Solids 566, 120895 (2021)

    Google Scholar 

  31. S. Mukamil, I. Ullah, C. Sarumaha, H.R. Alamri, N.S. Alsaiari, S.A. Khattak, E. Ahmed, T. Ahmad, S. Kothan, M. Shoaib, I. Khan, I. Ullah, J. Kaewkhao, G. Rooh, Optik (Stuttg.). 273, 170351 (2023)

    ADS  Google Scholar 

  32. K.U. Kumar, S.S. Babu, C.S. Rao, C.K. Jayasankar, Opt. Commun. 284, 2909 (2011)

    ADS  Google Scholar 

  33. Y. Dwivedi, S.B. Rai, Opt. Mater. (Amst.). 31, 87 (2008)

    ADS  Google Scholar 

  34. P. Manasa, C.K. Jayasankar, Opt. Mater. (Amst.). 62, 139 (2016)

    ADS  Google Scholar 

  35. R. Vijayakumar, K. Maheshvaran, V. Sudarsan, K. Marimuthu, J. Lumin. 154, 160 (2014)

    Google Scholar 

  36. S. Selvi, K. Marimuthu, N. Suriya Murthy, G. Muralidharan, J. Mol. Struct. 1119, 276 (2016)

    ADS  Google Scholar 

  37. A. Madhu, M. Al-Dossari, N. S. Abd EL-Gawaad, Devarajulu Gelija, K. N. Ganesha, N. Srinatha, Opt. Mater. (Amst.). 136, 113436 (2023)

  38. R. Rajaramakrishna, S. Karuthedath, R.V. Anavekar, H. Jain, J. Non Cryst. Solids 358, 1667 (2012)

    ADS  Google Scholar 

  39. A. Madhu, B. Eraiah, AIP Conf. Proc. 193(1), 090056 (2018)

    Google Scholar 

  40. A.K. Yadav, P. Singh, RSC Adv. 5, 67583 (2015)

    ADS  Google Scholar 

  41. M. Ganguli, K.J. Rao, J. Solid State Chem. 145, 65 (1999)

    ADS  Google Scholar 

  42. R. Reisfeld, C.K. Jorgensen, Hand Book on the Physics and Chemistry of Rare Earths, 9th edn. (North-Holland, New York, 1987)

    Google Scholar 

  43. W.T. Carnall, P.R. Fields, K. Rajnak, J. Chem. Phys. 49, 4424 (1968)

    ADS  Google Scholar 

  44. N.F. Mott, E.A. Davis, K. Weiser, Phys. Today 25, 55 (1972)

    ADS  Google Scholar 

  45. J. Tauc, Amorphous and Liquid Semiconductors (Springer US, Boston, 1974)

    Google Scholar 

  46. F. Urbach, Phys. Rev. 92, 1324 (1953)

    ADS  Google Scholar 

  47. X. Joseph, R. George, S. Thomas, M. Gopinath, M.S. Sajna, N.V. Unnikrishnan, Opt. Mater. (Amst.). 37, 552 (2014)

    ADS  Google Scholar 

  48. M.S. Sajna, S. Gopi, V.P. Prakashan, M.S. Sanu, C. Joseph, P.R. Biju, N.V. Unnikrishnan, Opt. Mater. (Amst.). 70, 31 (2017)

    ADS  Google Scholar 

  49. M. Gökçe, J. Non Cryst. Solids 505, 272 (2019)

    ADS  Google Scholar 

  50. S. Damodaraiah, V. Reddy Prasad, R.P. Vijaya Lakshmi, Y.C. Ratnakaram, Opt. Mater. (Amst.) 92, 352 (2019)

    ADS  Google Scholar 

  51. S.S. Babu, P. Babu, C.K. Jayasankar, W. Sievers, T. Tröster, G. Wortmann, J. Lumin. 126, 109 (2007)

    Google Scholar 

  52. R.T. Karunakaran, K. Marimuthu, S. Surendra Babu, S. Arumugam, Solid State Sci. 11, 1882 (2009)

    ADS  Google Scholar 

  53. S. Arunkumar, K. Venkata Krishnaiah, K. Marimuthu, Phys. B Condens. Matter 416, 88 (2013)

    ADS  Google Scholar 

  54. M. Milanova, L. Aleksandrov, A. Yordanova, R. Iordanova, N.S. Tagiara, A. Herrmann, G. Gao, L. Wondraczek, E.I. Kamitsos, J. Non Cryst. Solids 600, 122006 (2023)

    Google Scholar 

  55. A. Madhu, B. Eraiah, P. Manasa, N. Srinatha, Opt. Mater. (Amst.) 75, 357 (2018)

    ADS  Google Scholar 

  56. V.B. Sreedhar, K. Venkata Krishnaiah, S.K. Nayab Rasool, V. Venkatramu, C.K. Jayasankar, J. Non Cryst. Solids 505, 115 (2019)

    ADS  Google Scholar 

Download references

Acknowledgements

The authors (M.A. and S.N.) thank the Department of Physics, Bangalore University, JB Campus, for extending XRD and RAMAN facilities. The authors (M. Al-D and N. S. A. G) extend their appreciation to the Deanship of scientific Research at King Khalid University for funding this work through large group project under the grant number RGP.2/46/45. Authors also acknowledge the PL facility support from Centre of Excellence in Advanced materials research, Department of Physics, School of Applied Sciences, REVA University, India.

Funding

The current work was assisted financially from Deanship of scientific Research at King Khalid University for funding this work through Large Group project under the Grant number RGP.2/46/45.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Material preparation was done by AM and NS. The data collection was performed by AM, UKK and NS. The analysis of the results was executed by AM, UKK, RR, CKJ, MAD, NSAEL-G and NS. The first draft of the manuscript was written by AM and NS, and all authors commented on upgrading versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to A. Madhu or N. Srinatha.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madhu, A., Kagola, U.K., Rajaramakrishna, R. et al. Optical and spectroscopic studies on Eu3+ doped LCBB glasses for photonic device applications. Appl. Phys. A 130, 193 (2024). https://doi.org/10.1007/s00339-024-07346-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-024-07346-5

Keywords

Navigation