Skip to main content
Log in

Exploring the temperature-dependent phase transitions of the solid electrolytes copper and silver tetraiodomercurates (Cu2, Ag2) HgI4: a study of thermal and electrical conductivities

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Copper and silver tetraiodomercurates (Cu2HgI4, Ag2HgI4) are thermochromic materials whose color changes result from a crystalline phase transition, affecting their electrical and thermal conductivities. Both materials, defined as superionic solids, are solid electrolytes where the metallic cations are the charge carriers in the higher temperature phase, which occurs at 50 °C for Ag2HgI4 and at 69 °C for Cu2HgI4. In this work, we present the thermal characterization of these materials by measuring the thermal diffusivity as a function of temperature, intending to elucidate the influence of randomly moving cations on thermal transport and their interactions with the phonons produced in the anion sublattice. The electrical conductivity characterization enabled us to contrast their different behavior as the phase transition occurs due to temperature changes. Thermal and electrical transport performance characterization of these materials opens the possibility of using them in different applications, such as solid-state batteries, optical devices for recording media, active materials for thermally controlled systems, temperature sensing devices, and fillers for manufacturing smart composites, among many others.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All the data are contained within the article.

References

  1. S. Hull, D.A. Keen, J. Phys. Condens. Matter 12, 3751 (2000)

    ADS  Google Scholar 

  2. W.J. Pardee, G.D. Mahan, J. Solid State Chem. 15, 310 (1975)

    ADS  Google Scholar 

  3. A.B. Yaroslavtsev, Russ. Chem. Rev. 85, 1255 (2016)

    ADS  Google Scholar 

  4. S. Ohno, A. Banik, G.F. Dewald, M.A. Kraft, T. Krauskopf, N. Minafra, P. Till, M. Weiss, W.G. Zeier, Prog. Energy 2, 022001 (2020)

    ADS  Google Scholar 

  5. Z. Zou, Y. Li, Z. Lu, D. Wang, Y. Cui, B. Guo, Y. Li, X. Liang, J. Feng, H. Li, C.W. Nan, M. Armand, L. Chen, K. Xu, S. Shi, Chem. Rev. 120, 4169 (2020)

    PubMed  Google Scholar 

  6. B. Hans, Chem. Rev. 5518, 37 (1978)

    Google Scholar 

  7. S.R. Yousefi, A. Sobhani, M. Salavati-Niasari, Adv. Powder Technol. 28, 1258 (2017)

    Google Scholar 

  8. R.C. Agrawal, R. Kumar, R.K. Gupta, M. Saleem, J. Non Cryst. Solids 181, 110 (1995)

    ADS  Google Scholar 

  9. H. Rickert, Angew. Chemie Int. Ed. English 17, 37 (1978)

    Google Scholar 

  10. A. Hakami, S.S. Srinivasan, P.K. Biswas, A. Krishnegowda, S.L. Wallen, E.K. Stefanakos, J. Coatings Technol. Res. 19, 377 (2022)

    Google Scholar 

  11. N. Mott, Metal-Insulator Transitions (CRC Press, 2004)

    Google Scholar 

  12. F. Grasselli, J. Chem. Phys. Chem. Phys. (2022). https://doi.org/10.1063/5.0087382

    Article  Google Scholar 

  13. I. Karbovnyk, S. Piskunov, I. Bolesta, S. Bellucci, M.C. Guidi, M. Piccinini, E. Spohr, A.I. Popov, Eur. Phys. J. B. 70, 443 (2009)

    ADS  Google Scholar 

  14. Y. Huang, B. Shao, F. Han, A.C.S. Symp, Ser. 1413, 1 (2022)

    Google Scholar 

  15. Q. Zhao, S. Stalin, C.Z. Zhao, L.A. Archer, Nat. Rev. Mater. 5, 229 (2020)

    ADS  Google Scholar 

  16. T. Famprikis, P. Canepa, J.A. Dawson, M.S. Islam, C. Masquelier, Nat. Mater. 18, 1278 (2019)

    PubMed  ADS  Google Scholar 

  17. G. Yang, C. Abraham, Y. Ma, M. Lee, E. Helfrick, D. Oh, D. Lee, Appl. Sci. Sci. 10, 4727 (2020)

    Google Scholar 

  18. N. Preux, A. Rolle, R.N. Vannier, Electrolytes and Ion Conductors for Solid Oxide Fuel Cells (SOFCs) (Woodhead Publishing Limited, 2012)

    Google Scholar 

  19. H. Deng, W. Zhang, X. Wang, Y. Mi, W. Dong, W. Tan, B. Zhu, Int. J. Hydrogen Energy 42, 22228 (2017)

    Google Scholar 

  20. L.E. Bell, Science 321(5895), 1457 (2008)

    PubMed  ADS  Google Scholar 

  21. T. Ouyang, X. Zhang, M. Hu, Nanotechnology 26, 25702 (2015)

    Google Scholar 

  22. H. Liu, X. Shi, F. Xu, L. Zhang, W. Zhang, L. Chen, Q. Li, C. Uher, T. Day, G. Snyder Jeffrey, Nat. Mater. Mater. 11, 422 (2012)

    ADS  Google Scholar 

  23. D.A. Keen, J. Phys. Condens. Matter Phys. Condens. Matter 14, R819–R857 (2002)

    ADS  Google Scholar 

  24. J. He, K. Li, L. Jia, Y. Zhu, H. Zhang, J. Linghu, Appl. Therm. Eng. 236, 121813 (2024)

    Google Scholar 

  25. P.B. Allen, J.L. Feldman, Phys. Rev. B 48, 12581 (1993)

    ADS  Google Scholar 

  26. S. Hull, Reports Prog. Phys. 67, 1233 (2004)

    ADS  Google Scholar 

  27. Z. Wu, S. Zhang, Z. Liu, E. Mu, Z. Hu, Nano Energy 91, 106692 (2022)

    Google Scholar 

  28. M. Massetti, F. Jiao, A.J. Ferguson, D. Zhao, K. Wijeratne, A. Würger, J.L. Blackburn, X. Crispin, S. Fabiano, Chem. Rev. 121, 12465 (2021)

    PubMed  Google Scholar 

  29. W. Yu, S.U.S. Choi, J. Nanopart. Res. 5, 167 (2003)

    ADS  Google Scholar 

  30. F. Deng, Q.-S. Zheng, L.-F. Wang, C.-W. Nan, Appl. Phys. Lett. 90, 021914 (2007)

    ADS  Google Scholar 

  31. S. Yamada, H. Toshiyoshi, A.C.S. Appl, Mater. Interfaces 12, 36449 (2020)

    Google Scholar 

  32. Z. Liu, K. Shikinaka, Y. Otsuka, Y. Tominaga, Chem. Commun. 58, 4504 (2022)

    Google Scholar 

  33. J.ΑA. Ketelaar, Z. Phys, Chemistry 26, 327 (1934)

    Google Scholar 

  34. J.W. Brightwell, C.N. Buckley, R.C. Hollyoak, B. Ray, J. Mater. Sci. Lett. 3, 443 (1984)

    Google Scholar 

  35. T. Hibma, H.U. Beyeler, H.R. Zeller, Solid State Phys. 9, 1691 (1976)

    ADS  Google Scholar 

  36. A. Ahmad, J. Hazard. Mater. 179(1–3), 363 (2010)

    PubMed  Google Scholar 

  37. C.S. Sunandana, P.S. Kumar, Bull. Mater. Sci. 27, 1 (2004)

    Google Scholar 

  38. A.M. Salem, Y.A. El-Gendy, G.B. Sakr, W.Z. Soliman, J. Phys. D Appl. Phys. Phys. D. Appl. Phys. 41, 025311 (2008)

    Google Scholar 

  39. F. Soofivand, M. Salavati-Niasari, J. Mol. Liq. 252, 112 (2018)

    Google Scholar 

  40. L. Suchow, G.R. Pond, J. Am. Chem. Soc. 75, 5242 (1953)

    Google Scholar 

  41. T.A. Hameed, I.M.E. Radaf, G.B. Sakr, Appl. Phys. A Mater. Sci. Process. 124, 1 (2018)

    Google Scholar 

  42. K.W. Browall, J.S. Kasper, J. Solid State Chem. 28, 20 (1973)

    Google Scholar 

  43. S.M. Girvin, G.D. Mahan, Solid State Commun. 23, 629 (1977)

    ADS  Google Scholar 

  44. K. Wakamura, Solid State Ionics 149, 73 (2002)

    Google Scholar 

  45. N. Mahato, A. Banerjee, A. Gupta, S. Omar, K. Balani, Prog. Mater. Sci. 72, 141 (2015)

    Google Scholar 

  46. K. Tuo, C. Sun, S. Liu, Electrochem. Energy Rev. 6, 17 (2023)

    Google Scholar 

  47. Z. Li, J. Fu, X. Zhou, S. Gui, L. Wei, H. Yang, H. Li, X. Guo, Adv. Sci. 10, 2201718 (2023)

    Google Scholar 

  48. J. Kumar, K. Akhila, P. Kumar, R.K. Deshmukh, K.K. Gaikwad, J. Therm. Anal. Calorim. 148, 6061 (2023)

    Google Scholar 

  49. M. Chocolatl-Torres, A.P. Franco-Bacca, J.A. Ramírez-Rincón, C.L. Gómez-Heredia, F. Cervantes-Alvarez, J.J. Alvarado-Gil, R. Silva-Gonzalez, M. Toledo, U. Salazar-Kuri, Appl. Phys. A Mater. Sci. Process. 126, 1 (2020)

    Google Scholar 

  50. F. Cervantes-Alvarez, J.D. Macias, J.J. Alvarado-Gil, J. Phys. D Appl. Phys. Phys. D. Appl. Phys. 51, 065302 (2018)

    ADS  Google Scholar 

  51. W. Hagenmuller, van Gool, Application Prospects of Solid Electrolytes (Elsevier, 1978)

    Google Scholar 

  52. I.M. Bolesta, O.V. Futey, O.G. Syrbu, Solid State Ionics 119, 103 (1999)

    Google Scholar 

  53. S.N. Girvin, Solid State Commun. 23, 629 (1977)

    ADS  Google Scholar 

  54. R. Sudharsanan, B.P. Clayman, Solid State Ionics 15, 287 (1985)

    Google Scholar 

Download references

Acknowledgements

This work was partially funded by project CNR-CINVESTAV 2020: “Exploring the relation between near field and far field thermal emission tailored by coupling phase changing and plasmonic materials” and by CONAHCYT project A1-S-10011. F. C-A thanks to CONAHCYT by fellowship “Investigadores por México”. The authors are grateful to José Bante Guerra for their technical support.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, FC-A, JAC-E, APF-B, and JJA-G; formal analysis, FC-A, JAC-E; funding acquisition JJA-G; investigation, FC-A, JAC-E, and APF-B; methodology, FC-A and JAC-E; resources, US-K, MC-T and JJA-G; supervision, RAM-E, and JJA-G; visualization, APF-B and FC-A; writing—original draft, FC-A and JAC-E; writing—review and editing, FC-A, RAM-E and JJA-G. All authors have read and agreed to publish this version of the manuscript.

Corresponding author

Correspondence to Fernando Cervantes-Alvarez.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chan-Espinoza, J.A., Franco-Bacca, A.P., Cervantes-Alvarez, F. et al. Exploring the temperature-dependent phase transitions of the solid electrolytes copper and silver tetraiodomercurates (Cu2, Ag2) HgI4: a study of thermal and electrical conductivities. Appl. Phys. A 130, 169 (2024). https://doi.org/10.1007/s00339-024-07342-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-024-07342-9

Keywords

Navigation