Skip to main content
Log in

Nanoarchitectonics of yttrium-doped barium cerate-based proton conductor electrolyte for solid oxide fuel cells

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

As the third generation of fuel cells, solid oxide fuel cell (SOFC) provides a clean and low-pollution technology. Electrolyte material, which often plays a vital role in SOFC, has always been the focus and difficulty of research. Y-doped barium cerate-based proton conductor electrolyte, BaCe1–xYxO3–δ (x = 0, 0.05, 0.1, 0.15), were prepared using the nitrate-citrate-glycine combustion method. A series of tests and characterizations were performed to examine the structural, morphological, and electrical properties. X-ray diffraction (XRD) analysis proved that the BCY powders with pure cubic perovskite structure were formed after calcined at 1100 °C. SEM results showed that the BCY ceramics sintered at 1350 °C were dense and well-developed grains. The electrochemical performance of BCY proton conductor electrolyte was determined using the electrochemical impedance spectroscopy in dry air and wet air atmosphere at 400–800 °C. Results showed that Y-doped BaCeO3-based material had superior conductivity in air and the conductivity of proton conductor was significantly improved under wet air environment. Furthermore, the electrical conductivity of BCY samples was related to the amount of Y3+ doping. The conductivity in a water vapor environment achieved a maximal value of 0.039 S cm−1 at 800 °C when x = 0.15. So BaCe1–xYxO3-based materials can be used as a proton conductor electrolyte for SOFC in the medium temperature range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Availability of data and materials

Dade will be made available on request.

References

  1. L. He, H.Y. Gao, Y. Xuan, F. Zhang, J.F. Ren, M.N. Chen, Comp. Mater. Sci. 202, 111007 (2022)

    Google Scholar 

  2. H.O. Torun, S. Çakar, J. Therm. Anal. Calorim. 133, 1233–1239 (2018)

    Google Scholar 

  3. Raghvendra, R.K. Singh, A. Sinha, P. Singh, Ceram. Int. 40, 10711–10718 (2014)

    Google Scholar 

  4. I. Shajahan, J. Ahn, P. Nair, S. Medisetti, S. Patil, V. Niveditha, G.U.B. Babu, H.P. Dasari, J.-H. Lee, Mater. Chem. Phys. 216, 136–142 (2018)

    Google Scholar 

  5. S. Shawuti, Mater. Today. Commun. 30, 103000 (2022)

    Google Scholar 

  6. H. Shi, C. Su, R. Ran, J. Cao, Z. Shao, Prog. Nat. Sci-Mater. 30, 764–774 (2020)

    Google Scholar 

  7. T. Yamaguchi, H. Shimada, U. Honda, H. Kishimoto, T. Ishiyama, K. Hamamoto, H. Sumi, T. Suzuki, Y. Fujishiro, Solid State Ionics 288, 347–350 (2016)

    Google Scholar 

  8. J.Q. Li, Z.X. Zhu, Y.C. Huang, F. Wang, Mater. Today Energy. 26, 101001 (2022)

    Google Scholar 

  9. H. Iwahara, T. Esaka, H. Uchida, N. Maeda, Solid State Ionics 3–4, 359–363 (1981)

    Google Scholar 

  10. H. Iwahara, Solid State Ionics 52, 99–104 (1992)

    Google Scholar 

  11. J.Y. Lin, L. Shao, F.Z. Si, X.Z. Fu, J.L. Luo, Int. J. Hydrogen Energy 43, 19704–19710 (2018)

    Google Scholar 

  12. L. Bi, E.H. Da’as, S.P. Shafi, Electrochem. Commun. 80, 20–23 (2017)

    Google Scholar 

  13. T. Somekawa, Y. Matsuzaki, M. Sugahara, Y. Tachikawa, H. Matsumoto, S. Taniguchi, K. Sasaki, int. J. Hydrogen. Energy 42, 16722–16730 (2017)

    Google Scholar 

  14. Y.H. Ling, H. Chen, J. Niu, F. Wang, L. Zhao, X.M. Ou, T. Nakamura, K. Amezawa, J. Eur. Ceram. Soc. 36, 3423–3431 (2016)

    Google Scholar 

  15. H.X. Xie, Z.H. Wei, Y. Yang, H. Chen, X.M. Ou, B. Lin, Y. Ling, Mater. Sci. Eng. B 238–239, 76–82 (2018)

    Google Scholar 

  16. T. Shimada, C. Wen, N. Taniguchi, J. Otomo, H. Takahashi, J. Power. Sources 131, 289–292 (2004)

    ADS  Google Scholar 

  17. F. Zhao, S. Wang, L. Dixon, F. Chen, Jops. 196, 7500–7504 (2011)

    Google Scholar 

  18. T. Kuroha, Y. Niina, M. Shudo, G. Sakai, N. Matsunaga, T. Goto, K. Yamauchi, Y. Mikami, Y. Okuyama, Jops. 506, 230134 (2021)

    Google Scholar 

  19. D.S. Saini, A. Ghosh, S. Tripathy, S.K. Sharma, A. Kumar, D. Bhattacharya, Acs Appl Energ Mater. 1(7), 3469–3478 (2018)

    Google Scholar 

  20. D.S. Saini, A. Ghosh, S. Tripathy, A. Kumar, S.K. Sharma, N. Kumar, S. Majumdar, D. Bhattacharya, Sci. Rep. 10, 3461 (2018)

    ADS  Google Scholar 

  21. D. Han, T. Uda, J. Mater. Chem. A. 6, 18571–18582 (2018)

    Google Scholar 

  22. Y. Huang, R. Merkle, J. Maier, Solid State Ionics 347, 115174 (2020)

    Google Scholar 

  23. M.K. Hossain, T. Yamamoto, K. Hashizume, Ceram. Int. 47, 27177–27187 (2021)

    Google Scholar 

  24. D. Han, S. Uemura, C. Hiraiwa, M. Majima, T. Uda, Chemsuschem 11, 4102–4113 (2018)

    PubMed  Google Scholar 

  25. H. Iwahara, H. Uchida, K. Ono, K. Ogaki, J. Electrochem. Soc. 135, 529–533 (1988)

    ADS  Google Scholar 

  26. X. Jiang, F. Wu, H. Wang, Materials. 12, 739 (2019)

    ADS  PubMed  PubMed Central  Google Scholar 

  27. Y. Gu, G. Luo, Z. Chen, Y. Huo, F. Wu, Ceram. Int. 48, 10650–10658 (2022)

    Google Scholar 

  28. V.C.D. Graça, F.J.A. Loureiro, L.I.V. Holz, S.M. Mikhalev, D.P. Fagg, Int. J. Energy Res. 46, 22113–22123 (2022)

    Google Scholar 

  29. Z. Zhu, S. Wang, Ceram. Int. 45, 19289–19296 (2019)

    Google Scholar 

  30. A. Senthil Kumar, R. Balaji, S. Jayakumar, Mater. Chem. Phys. 202, 82–88 (2017)

    Google Scholar 

  31. M. Gautam, A. Ahuja, A. Sinha, J. Sharma, P.K. Patro, A. Venkatasubramanian, Bull. Mater. Sci. 43, 239 (2020)

    Google Scholar 

  32. E.K. Shin, E. Anggia, J.S. Park, Solid State Ionics 339, 115007 (2019)

    Google Scholar 

  33. X. Zhou, N. Hou, T. Gan, L. Fan, Y. Zhang, J. Li, G. Gao, Y. Zhao, Y. Li, J. Power. Sources 495, 229776 (2021)

    Google Scholar 

  34. D. Vignesh, E. Rout, Comput. Condens. Matter. 33, e00763 (2022)

    Google Scholar 

  35. T.Z. Xiong, J.T. Li, J.C. Roy, M. Koroma, Z.X. Zhu, H. Yang, L. Zhang, T. Ouyang, M.-S. Balogun, M. Al-Mamun, J. Energy Chem. 81, 71–81 (2023)

    Google Scholar 

  36. A. Subramaniyan, J.H. Tong, R.P. O’Hayre, N.M. Sammes, J. Am. Ceram. Soc. 94, 1800–1804 (2011)

    Google Scholar 

  37. S. Rajendran, N.K. Thangavel, S. Alkatie, Y. Ding, L.M.R. Arava, J. Alloys Compd. 870, 159431 (2021)

    Google Scholar 

  38. W. Yang, L. Wang, Y. Li, H. Zhou, Z. He, C. Han, L. Dai, J. Alloys Compd. 868, 159117 (2021)

    Google Scholar 

  39. E. Vøllestad, V. Øygarden, J.S. Graff, M.F. Sunding, J.D. Pietras, J.M. Polfus, M.L. Fontaine, Acta Mater. 227, 117695 (2022)

    Google Scholar 

  40. G.B. Zhang, D.M. Smyth, Solid State Ionics 82, 153–160 (1995)

    Google Scholar 

  41. X. Yang, L. Jia, B. Pan, B. Chi, J. Pu, J. Li, J. Phys. Chem. C 124, 8024–8033 (2020)

    Google Scholar 

  42. S. Rajendran, N.K. Thangavel, H. Ding, Y. Ding, D. Ding, L.M.R. Arava, ACS Appl. Mater. Interfaces 12, 38275–38284 (2020)

    PubMed  Google Scholar 

  43. S. Mumtaz, M.A. Ahmad, R. Raza, M.S. Arshad, B. Ahmed, M.N. Ashiq, G. Abbas, Ceram. Int. 43, 14354–14360 (2017)

    Google Scholar 

  44. M. Shahid, Ionics 28, 3583–3601 (2022)

    Google Scholar 

  45. I.A. Zvonareva, A.M. Mineev, N.A. Tarasova, X.Z. Fu, D.A. Medvedev, J. Adv. Ceram. 11, 1131–1143 (2022)

    Google Scholar 

  46. X.M. Liu, Z.G. Liu, J.H. Ouyang, Y.J. Gu, J. Xiang, F.Y. Yan, Electrochim. Acta 59, 464–469 (2012)

    ADS  Google Scholar 

  47. X. Xu, L. Bi, X.S. Zhao, J. Membr. Sci. 558, 17–25 (2018)

    Google Scholar 

  48. S.A. Rasaki, C. Liu, C. Lao, Z. Chen, Prog. Solid State Chem. 63, 100325 (2021)

    Google Scholar 

  49. H. Matsumoto, Y. Kawasaki, N. Ito, M. Enoki, T. Ishihara, Electrochem. Solid State Lett. 10(4), B77 (2007)

    Google Scholar 

  50. A.S. Babu, R. Bauri, Int. J. Hydrogen Energy 39(26), 14487–14495 (2014)

    Google Scholar 

Download references

Funding

This project is kindly supported by the Nature Science Foundation of Anhui Province of China (2108085ME152) and the Talent Research Fund Project of Hefei University (21-22RC34).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by HL, XZ and YC. The first draft of the manuscript was written by JC. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jihai Cheng.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Ethical approval

All authors consent to participate and consent to publish.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, H., Zhu, X., Chen, Y. et al. Nanoarchitectonics of yttrium-doped barium cerate-based proton conductor electrolyte for solid oxide fuel cells. Appl. Phys. A 130, 168 (2024). https://doi.org/10.1007/s00339-024-07341-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-024-07341-w

Keywords

Navigation