Skip to main content
Log in

Structural characteristics and enhanced two-photon absorption behavior of Pb-doped ZnMoO4 nanostructures for optoelectronic device applications

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We investigate the nonlinear optical response of Pb2+-doped ZnMoO4 nanostructures synthesized by chemical precipitation technique. X-ray diffraction (XRD) and Raman spectroscopy results confirm the formation of ZnMoO4 nanostructures with a triclinic structure. High-Resolution Transmission electron microscope (HRTEM) reveals the deformed spherical shape of nanostructures. Further, the successful doping and molecular bonding of Pb2+ with ZnMoO4 was evidenced by FTIR and XPS. UV–Vis absorption spectra reveals the alteration in the electronic band structure of ZnMoO4 nanostructures upon Pb doping, leading to a considerable increase in bandgap and enhanced charge transfer within ZnMoO4: Pb nanostructure. The nonlinear optical absorption and optical limiting characteristics of the nanoparticles is measured via the open aperture Z-scan technique with an Nd: YAG pulsed laser at 532 nm, exhibiting a reverse saturable absorption and a rapid decrease in the commencement of the optical limiting threshold with the increased in Pb concentration. The observed nonlinear absorption can be attributed to the crystal structure, particle size, creation of oxygen vacancies, and defects on the host lattice. These results suggest that Pb2+-doped ZnMoO4 nanoparticles have excellent prospects for optical limiting (OL) applications. This could be useful for applications such as laser protection and optoelectronic device applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data used to support the findings of this study are included within this article.

References

  1. R.A. Sujatha et al., Structural and non-linear optical response of Er3+ doped SrMoO4 nanostructures. Appl. Surf. Sci. 490, 260–265 (2019)

    ADS  Google Scholar 

  2. B. Binish et al., Influence of yttrium doping on the nonlinear optical limiting properties of cadmium molybdate nanostructures. RSC Adv. 12(42), 27145–27153 (2022)

    ADS  PubMed  PubMed Central  Google Scholar 

  3. R. Divya, N. Manikandan, G. Vinitha, Synthesis and characterization of nickel doped zinc selenide nanospheres for nonlinear optical applications. J. Alloy. Compd. 791, 601–612 (2019)

    Google Scholar 

  4. N. Priyadarshani, G. Vinitha, T.S. Girisun, Third order nonlinear optical properties of monoclinic and orthorhombic CuNb2O6 under CW laser illumination. Opt. Laser Technol. 108, 287–294 (2018)

    ADS  Google Scholar 

  5. Q. Miao et al., Numerical analysis on optical limiting performance of a series of phthalocyanines for nanosecond pulses. J. Phys. B At. Mol. Opt. Phys. 45(8), 085402 (2012)

    ADS  Google Scholar 

  6. B. Vijayakumar et al., Enhanced optical nonlinearity in Bi3+-doped CePO4 nanostructures for optical limiting applications. ACS Appl. Nano Mater. 6(9), 7499–7509 (2023)

    Google Scholar 

  7. S.J. Varma et al., 2D TiS2 layers: a superior nonlinear optical limiting material. Adv. Opt. Mater. 5(24), 1700713 (2017)

    Google Scholar 

  8. L.W. Tutt, T.F. Boggess, A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials. Prog. Quantum Electron. 17(4), 299–338 (1993)

    ADS  Google Scholar 

  9. C. Hege, O. Muller, L. Merlat, Laser protection with optical limiting by combination of polymers with dyes. J. Appl. Polym. Sci. 136(10), 47150 (2019)

    Google Scholar 

  10. Y. Chen et al., Carbon nanotube-based functional materials for optical limiting. J. Nanosci. Nanotechnol. 7(4–5), 1268–1283 (2007)

    PubMed  Google Scholar 

  11. A. Jayasree et al., Influence of Ni doping on the structural and third order nonlinear optical properties of ZnMoO4 nanostructures. Ceram. Int. 48(19), 29267–29273 (2022)

    Google Scholar 

  12. J. Bi et al., Solvothermal preparation, electronic structure and photocatalytic properties of PbMoO4 and SrMoO4. Appl. Catal. B 91(1–2), 135–143 (2009)

    Google Scholar 

  13. K. Zhang et al., Synthesis and tunable nonlinear absorption properties of Zn3Mo2O9 nanosheet ceramic material. Opt. Mater. 99, 109570 (2020)

    Google Scholar 

  14. P. Divya et al., Structural and nonlinear optical absorption studies of Mn doped PbWO4 nanoparticles. J. Photochem. Photobiol., A 426, 113752 (2022)

    Google Scholar 

  15. K.M. Rahulan et al., Luminescence and nonlinear optical properties of Er3+-doped ZnWO4 nanostructures. J. Photochem. Photobiol., A 386, 112128 (2020)

    Google Scholar 

  16. K.M. Rahulan, S. Ganesan, P. Aruna, Synthesis and optical limiting studies of Au-doped TiO2 nanoparticles. Adv. Nat. Sci. Nanosci. Nanotechnol. 2(2), 025012 (2011)

    ADS  Google Scholar 

  17. P. Divya et al., Third order nonlinear optical absorption studies of Cr3+ doped PbWO4 nanostructures. Opt. Mater. 134, 113102 (2022)

    Google Scholar 

  18. C. Nagarajan et al., Optical nonlinearities of centrosymmetric pure and cerium doped calcium tungstate dumbbell shaped nanoparticles. Opt. Mater. 110, 110512 (2020)

    Google Scholar 

  19. B. Anand et al., The role of defects in the nonlinear optical absorption behavior of carbon and ZnO nanostructures. Phys. Chem. Chem. Phys. 16(18), 8168–8177 (2014)

    PubMed  Google Scholar 

  20. Y. Ren et al., Shape-tailored hydrothermal synthesis of CdMoO4 crystallites on varying pH conditions. J. Am. Ceram. Soc. 90(4), 1251–1254 (2007)

    Google Scholar 

  21. C. Pupp, R. Yamdagni, R.F. Porter, Mass spectrometric study of the evaporation of BaMoO4 and BaWO4. J. Inorg. Nucl. Chem. 31(7), 2021–2029 (1969)

    Google Scholar 

  22. W. Jiang et al., Controllable synthesis of hierarchical strontium molybdate by sonochemical method. Cryst. Res. Technol. 47(9), 997–1003 (2012)

    Google Scholar 

  23. Z.M. Htwe et al., Investigation of third order nonlinear optical properties of undoped and indium doped zinc oxide (InZnO) thin films by nanosecond Z-scan technique. Opt. Mater. 52, 6–13 (2016)

    ADS  Google Scholar 

  24. I. Parra, S. Valbuena, F. Racedo, Measurement of non-linear optical properties in graphene oxide using the Z-scan technique. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 244, 118833 (2021)

    Google Scholar 

  25. P.H. Neethling, Determining Non-Linear Optical Properties Using the Z-Scan Technique (University of Stellenbosch, Stellenbosch, 2005)

    Google Scholar 

  26. S. Abrahams, Crystal structure of the transition-metal molybdates and tungstates. III. Diamagnetic α-ZnMoO4. J. Chem. Phys. 46(6), 2052–2063 (1967)

    ADS  Google Scholar 

  27. Y.-P. Gao et al., High-performance symmetric supercapacitor based on flower-like zinc molybdate. J. Alloy. Compd. 731, 1151–1158 (2018)

    Google Scholar 

  28. A. Kaphle, M.F. Borunda, P. Hari, Influence of cobalt doping on residual stress in ZnO nanorods. Mater. Sci. Semicond. Process. 84, 131–137 (2018)

    Google Scholar 

  29. Z. Shahri, M. Bazarganipour, M. Salavati-Niasari, Controllable synthesis of novel zinc molybdate rod-like nanostructures via simple surfactant-free precipitation route. Superlattices Microstruct. 63, 258–266 (2013)

    ADS  Google Scholar 

  30. A. Bokuniaeva, A. Vorokh, Estimation of particle size using the Debye equation and the Scherrer formula for polyphasic TiO2 powder. J. Phys. Conf. Ser. 1410, 012057 (2019)

    Google Scholar 

  31. H. Oudghiri-Hassani et al., Preparation and characterization of α-zinc molybdate catalyst: efficient sorbent for methylene blue and reduction of 3-nitrophenol. Molecules 23(6), 1462 (2018)

    PubMed  PubMed Central  Google Scholar 

  32. C.C. Chen et al., Accelerated ZnMoO4 photocatalytic degradation of pirimicarb under UV light mediated by peroxymonosulfate. Appl. Organomet. Chem. 33(9), e5113 (2019)

    ADS  Google Scholar 

  33. Z.M. Gibbs, A. LaLonde, G.J. Snyder, Optical band gap and the Burstein-Moss effect in iodine doped PbTe using diffuse reflectance infrared Fourier transform spectroscopy. New J. Phys. 15(7), 075020 (2013)

    ADS  Google Scholar 

  34. S. Sherwani et al., Lanthanum doped zinc molybdate: antibacterial and photo-catalysis properties. Sci. Adv. Mater. 14(8), 1320–1330 (2022)

    Google Scholar 

  35. C. Han et al., Synthesis and luminescence properties of ZnMoO 4: Eu 3+, M+(M+= Li+, Na+ and K+) phosphors. J. Mater. Sci. Mater. Electron. 28, 4409–4413 (2017)

    ADS  Google Scholar 

  36. B.-g. Zhai et al., Effects of sintering temperature on the morphology and photoluminescence of Eu3+ doped zinc molybdenum oxide hydrate. J. Nanomater. 2018 (2018)

  37. M. Ahmed, M. Abdel-Messih, Structural and nano-composite features of TiO2–Al2O3 powders prepared by sol–gel method. J. Alloy. Compd. 509(5), 2154–2159 (2011)

    Google Scholar 

  38. V. Marques et al., Effect of different solvent ratios (water/ethylene glycol) on the growth process of CaMoO4 crystals and their optical properties. Cryst. Growth Des. 10(11), 4752–4768 (2010)

    Google Scholar 

  39. V.M. Longo et al., Hierarchical assembly of CaMoO4 nano-octahedrons and their photoluminescence properties. The Journal of Physical Chemistry C 115(13), 5207–5219 (2011)

    Google Scholar 

  40. B. Binish, K.M. Rahulan, Synergic effects of Sn4+ doping on the nonlinear optical limiting properties of SnxCd1-xMoO4 nanostructures for optoelectronic applications. J. Photochem. Photobiol., A 439, 114614 (2023)

    Google Scholar 

  41. F.D. Hardcastle, I.E. Wachs, Determination of molybdenum–oxygen bond distances and bond orders by Raman spectroscopy. J. Raman Spectrosc. 21(10), 683–691 (1990)

    ADS  Google Scholar 

  42. S. Karekar et al., Synthesis of zinc molybdate and zinc phosphomolybdate nanopigments by an ultrasound assisted route: Advantage over conventional method. Chem. Eng. Process. 87, 51–59 (2015)

    ADS  Google Scholar 

  43. B. Vijayakumar et al., Structural characteristics and Effective two photon absorption induced optical limiting behavior of Co2+ doped monoclinic LaPO4 nanostructures. J. Photochem. Photobiol. A Chem. 439, 114615 (2023)

    Google Scholar 

  44. U. Eduok, J. Szpunar, Ultrasound-assisted synthesis of zinc molybdate nanocrystals and molybdate-doped epoxy/PDMS nanocomposite coatings for Mg alloy protection. Ultrason. Sonochem. 44, 288–298 (2018)

    PubMed  Google Scholar 

  45. B. Bakiz, F. Guinneton, J. Gavarri, Structural and temperature-dependent vibrational analyses of the non-centrosymmetric ZnMoO4 molybdate. J. Mater. Environ. Sci. 7(9), 3076–3083 (2016)

    Google Scholar 

  46. K. Gokulkumar et al., Zinc molybdate/functionalized carbon nanofiber composites modified electrodes for high-performance amperometric detection of hazardous drug Sulfadiazine. OpenNano 10, 100131 (2023)

    Google Scholar 

  47. F. Nti, D.A. Anang, J.I. Han, Facilely synthesized NiMoO4/CoMoO4 nanorods as electrode material for high performance supercapacitor. J. Alloy. Compd. 742, 342–350 (2018)

    Google Scholar 

  48. V.V. Burungale et al., Chemically synthesized PbS nanoparticulate thin films for a rapid NO2 gas sensor. Mater. Sci.-Pol. 34(1), 204–211 (2016)

    ADS  Google Scholar 

  49. M. Sheik-Bahae et al., Sensitive measurement of optical nonlinearities using a single beam. IEEE J. Quantum Electron. 26(4), 760–769 (1990)

    ADS  Google Scholar 

  50. M. Ramya et al., Synthesis of stable ZnO nanocolloids with enhanced optical limiting properties via simple solution method. Opt. Mater. 81, 30–36 (2018)

    ADS  Google Scholar 

  51. B. Vijayakumar et al., Structural characteristics and effective two photon absorption induced optical limiting behavior of Co2+ doped monoclinic LaPO4 nanostructures. J. Photochem. Photobiol., A 439, 114615 (2023)

    Google Scholar 

  52. B. Wang et al., Starburst Triarylamine donor–acceptor–donor quadrupolar derivatives based on cyano-substituted diphenylaminestyrylbenzene: tunable aggregation-induced emission colors and large two-photon absorption cross sections. Chem.-A Eur. J. 17(9), 2647–2655 (2011)

    Google Scholar 

  53. M. Rajabi, F. Abrinaei, High nonlinear optical response of Lanthanum-doped TiO2 nanorod arrays under pulsed laser irradiation at 532 nm. Opt. Laser Technol. 109, 131–138 (2019)

    ADS  Google Scholar 

  54. S. Mathews et al., Nonlinear optical and optical limiting properties of phthalocyanines in solution and thin films of PMMA at 633 nm studied using a cw laser. Mater. Lett. 61(22), 4426–4431 (2007)

    Google Scholar 

  55. M. Durairaj, T.S. Girisun, S.V. Rao, 3PA-induced optical limiting in pure and barium borate decorated MoS 2 nanocomposites. SN Appl. Sci. 2, 1–14 (2020)

    Google Scholar 

  56. C. Li et al., Optical limiting property of gold nanorods/silicone hybrid materials to tunable laser. J. Lumin. 177, 88–92 (2016)

    Google Scholar 

  57. S. Tekin et al., Defect assisted enhanced nonlinear optical performance and optical limiting of pure and doped BiVO4 powders and nanocomposite films. J. Lumin. 252, 119362 (2022)

    Google Scholar 

  58. M. Saravanan, T.C. Sabari Girisun, Enhanced nonlinear optical absorption and optical limiting properties of superparamagnetic spinel zinc ferrite decorated reduced graphene oxide nanostructures. Appl. Surf. Sci. 392, 904–911 (2017)

    ADS  Google Scholar 

  59. M. Kavitha et al., Synthesis of reduced graphene oxide–ZnO hybrid with enhanced optical limiting properties. J. Mater. Chem. C 1(23), 3669–3676 (2013)

    Google Scholar 

  60. J. Zhu et al., Graphene oxide covalently functionalized with zinc phthalocyanine for broadband optical limiting. Carbon 49(6), 1900–1905 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

ASJ: conceptual framework, study formation and plan, and final approval of the manuscript version to be published, writing-first draft. ALF: data curation, writing-review and editing. RAS: data curation, visualization. MD: data curation. TCSG: data curation, data gathering and formal analysis. KMR: analysis of data and approval of the manuscript’s final report for publication.

Corresponding authors

Correspondence to N. Angeline Little Flower or K. Mani Rahulan.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jayasree, A.S., Flower, N.A.L., Sujatha, R.A. et al. Structural characteristics and enhanced two-photon absorption behavior of Pb-doped ZnMoO4 nanostructures for optoelectronic device applications. Appl. Phys. A 130, 181 (2024). https://doi.org/10.1007/s00339-024-07340-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-024-07340-x

Keywords

Navigation