Skip to main content
Log in

Structural characteristics and thermal performances of paraffin-based phase change materials for phase change sunshade

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

As an inexpensive and easily available organic phase change material (PCM), paraffin has good energy storage effect and can realize efficient energy storage and utilization. In this work, paraffin section–lauric acid (PS–LA) and paraffin section–myristic acid (PS–MA) were prepared by melting blending paraffin section (48–50 °C) with fatty acids to overcome the limitation of phase change temperature of paraffin section (PS). The phase change temperatures of PS–LA and PS–MA were 36.88 and 42.17 °C, and the phase change latent heats were 174.55 and 184.53 J/g, respectively. Thermal cycle treatment and performance analysis shown PS–LA has better thermal reliability, and the mixing process of PS and LA has no chemical reaction. The phase change sunshade made of PS–LA was placed on the outer side of the glass window, which could reduce the central peak temperature of the model by 4.893 °C, playing an excellent role in delaying and reducing the peak temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The authors do not have permission to share data.

References

  1. P. Prabhu, S. Sawant, Current developments in composite phase change materials for thermal energy storage application: a review. Mater. Today Proc. 72, 810–816 (2023). https://doi.org/10.1016/j.matpr.2022.09.054

    Article  Google Scholar 

  2. L.Y. Yang, C.P. Feng, L. Bai, R.Y. Bao, Z.Y. Liu, M.B. Yang, W. Yang, Flexible shape-stabilized phase change materials with passive radiative cooling capability for thermal management. Chem. Eng. J. 425, 131466 (2021). https://doi.org/10.1016/j.cej.2021.131466

    Article  Google Scholar 

  3. J. Paul, K. Kadirgama, M. Samykano, A.K. Pandey, V.V. Tyagi, A comprehensive review on thermophysical properties and solar thermal applications of organic nano composite phase change materials. J. Energy Storage 45, 103415 (2022). https://doi.org/10.1016/j.est.2021.103415

    Article  Google Scholar 

  4. S. Liu, X. Zhang, X. Zhu, S. Xin, A low-temperature phase change material based on capric-stearic acid/expanded graphite for thermal energy storage. ACS Omega 6, 17988–17998 (2021). https://doi.org/10.1021/acsomega.1c01705

    Article  PubMed  PubMed Central  Google Scholar 

  5. Y. Zhang, J. Huang, M. Cao, Z. Liu, Q. Chen, A novel flexible phase change material with well thermal and mechanical properties for lithium batteries application. J. Energy Storage 44, 103433 (2021). https://doi.org/10.1016/j.est.2021.103433

    Article  Google Scholar 

  6. Y. Chen, C.W.Y. Wong, R. Yang, X. Miao, Optimal structure adjustment strategy, emission reduction potential and utilization efficiency of fossil energies in China. Energy 237, 121623 (2021). https://doi.org/10.1016/j.energy.2021.121623

    Article  Google Scholar 

  7. Y. Gao, X. Zhang, X. Xu, L. Liu, Y. Zhao, S. Zhang, Application and research progress of phase change energy storage in new energy utilization. J. Mol. Liq. 343, 117554 (2021). https://doi.org/10.1016/j.molliq.2021.117554

    Article  Google Scholar 

  8. Y.C. Li, B.B. Wang, W.Y. Zhang, J.Q. Zhao, X.Y. Fang, J.M. Sun, R.Q. Xia, H.W. Guo, Y. Liu, Processing wood into a phase change material with high solar-thermal conversion efficiency by introducing stable polyethylene glycol-based energy storage polymer. Energy 254, 124206 (2022). https://doi.org/10.1016/j.energy.2022.124206

    Article  Google Scholar 

  9. Y. Fang, S. Liu, X. Li, X. Hu, H. Wu, X. Lu, J. Qu, Biomass porous potatoes/MXene encapsulated PEG-based PCMs with improved photo-to-thermal conversion capability. Sol. Energy Mater. Sol. Cells 237, 111559 (2022). https://doi.org/10.1016/j.solmat.2021.111559

    Article  Google Scholar 

  10. V. Chinnasamy, J. Heo, S. Jung, H. Lee, H. Cho, Shape stabilized phase change materials based on different support structures for thermal energy storage applications—a review. Energy 262, 125463 (2022). https://doi.org/10.1016/j.energy.2022.125463

    Article  Google Scholar 

  11. Y. Luo, F. Zhang, C. Li, J. Cai, Biomass-based shape-stable phase change materials supported by garlic peel-derived porous carbon for thermal energy storage. J. Energy Storage 46, 103929 (2022). https://doi.org/10.1016/j.est.2021.103929

    Article  Google Scholar 

  12. N. Philip, C. Veerakumar, A. Sreekumar, Lauryl alcohol and stearyl alcohol eutectic for cold thermal energy storage in buildings: Preparation, thermophysical studies and performance analysis. J. Energy Storage 31, 101600 (2020). https://doi.org/10.1016/j.est.2020.101600

    Article  Google Scholar 

  13. A. Ghodrati, R. Zahedi, A. Ahmadi, Analysis of cold thermal energy storage using phase change materials in freezers. J. Energy Storage 51, 104433 (2022). https://doi.org/10.1016/j.est.2022.104433

    Article  Google Scholar 

  14. X. Liu, H. Su, Z. Huang, P. Lin, T. Yin, X. Sheng, Y. Chen, Biomass-based phase change material gels demonstrating solar-thermal conversion and thermal energy storage for thermoelectric power generation and personal thermal management. Sol. Energy 239, 307–318 (2022). https://doi.org/10.1016/j.solener.2022.05.004

    Article  ADS  Google Scholar 

  15. Y.A. Bhutto, A.K. Pandey, R. Saidur, B. Aljafari, V.V. Tyagi, Analyzing the thermal potential of binary 2D (h-BN/Gr) nanoparticles enhanced lauric acid phase change material for photovoltaic thermal system application. J. Energy Storage 73, 109116 (2023). https://doi.org/10.1016/j.est.2023.109116

    Article  Google Scholar 

  16. H. Zhang, C. Xu, G. Fang, Encapsulation of inorganic phase change thermal storage materials and its effect on thermophysical properties: a review. Sol. Energy Mater. Sol. Cells 241, 111747 (2022). https://doi.org/10.1016/j.solmat.2022.111747

    Article  Google Scholar 

  17. K.O. Mohaisen, M. Hasan Zahir, M. Maslehuddin, S.U. Al-Dulaijan, Development of a shape-stabilized phase change material utilizing natural and industrial by products for thermal energy storage in buildings. J. Energy Storage 50, 104205 (2022). https://doi.org/10.1016/j.est.2022.104205

    Article  Google Scholar 

  18. W. Zhang, X. Zhang, X. Zhang, Z. Yin, Y. Liu, M. Fang, X. Wu, X. Min, Z. Huang, Lauric–stearic acid eutectic mixture/carbonized biomass waste corn cob composite phase change materials: preparation and thermal characterization. Thermochim. Acta 674, 21–27 (2019). https://doi.org/10.1016/j.tca.2019.01.022

    Article  Google Scholar 

  19. N. Sahan, H.O. Paksoy, Thermal enhancement of paraffin as a phase change material with nanomagnetite. Sol. Energy Mater. Sol. Cells 126, 56–61 (2014). https://doi.org/10.1016/j.solmat.2014.03.018

    Article  Google Scholar 

  20. F. Zhang, H. Liu, X. Wang, X. Wang, E. Cui, L. Wang, Form-stable paraffin/rice straw/polyvinyl alcohol composite phase change material for thermal energy storage. Mater. Lett. 294, 129790 (2021). https://doi.org/10.1016/j.matlet.2021.129790

    Article  Google Scholar 

  21. D. Li, B. Zhuang, Y. Chen, B. Li, V. Landry, A. Kaboorani, Z. Wu, X.A. Wang, Incorporation technology of bio-based phase change materials for building envelope: a review. Energy Build. 260, 111920 (2022). https://doi.org/10.1016/j.enbuild.2022.111920

    Article  Google Scholar 

  22. Z. Wang, X. Zhang, Y. Xu, G. Chen, F. Lin, H. Ding, Preparation and thermal properties of shape-stabilized composite phase change materials based on paraffin wax and carbon foam. Polymer 237, 124361 (2021). https://doi.org/10.1016/j.polymer.2021.124361

    Article  Google Scholar 

  23. T. Xiong, Y.S. Ok, P.D. Dissanayake, D.C.W. Tsang, S. Kim, H.W. Kua, K.W. Shah, Preparation and thermal conductivity enhancement of a paraffin wax-based composite phase change material doped with garlic stem biochar microparticles. Sci. Total. Environ. 827, 154341 (2022). https://doi.org/10.1016/j.scitotenv.2022.154341

    Article  ADS  PubMed  Google Scholar 

  24. G. Du, X. Lai, J. Hu, Z. Zhang, Construction of high thermal conductive boron nitrid@chitosan aerogel/paraffin composite phase change material. Sol. Energy Mater. Sol. Cells 240, 111532 (2022). https://doi.org/10.1016/j.solmat.2021.111532

    Article  Google Scholar 

  25. Z. Sun, W. Kong, S. Zheng, R.L. Frost, Study on preparation and thermal energy storage properties of binary paraffin blends/opal shape-stabilized phase change materials. Sol. Energy Mater. Sol. Cells 117, 400–407 (2013). https://doi.org/10.1016/j.solmat.2013.07.003

    Article  ADS  Google Scholar 

  26. R. Zhang, D. Chen, L. Chen, X. Cao, X. Li, Y. Qu, Preparation and thermal properties analysis of fatty acids/1-hexadecanol binary eutectic phase change materials reinforced with TiO2 particles. J Energy Storage. 51, 104546 (2022). https://doi.org/10.1016/j.est.2022.104546

    Article  Google Scholar 

  27. D. Zhou, J. Yuan, X. Xiao, Y. Liu, Preparation and characterization of lauric–myristic acid/expanded graphite as composite phase change energy storage material. J. Nanomater. 2021, 1–11 (2021). https://doi.org/10.1155/2021/1828147

    Article  Google Scholar 

  28. P. Zuo, Z. Liu, H. Zhang, D. Dai, Z. Fu, J. Corker, M. Fan, Formulation and phase change mechanism of capric acid/octadecanol binary composite phase change materials. Energy 270, 126943 (2023). https://doi.org/10.1016/j.energy.2023.126943

    Article  Google Scholar 

  29. H. Weinlaeder, W. Koerner, M. Heidenfelder, Monitoring results of an interior sun protection system with integrated latent heat storage. Energy Build. 43, 2468–2475 (2011). https://doi.org/10.1016/j.enbuild.2011.06.007

    Article  Google Scholar 

  30. T. Silva, R. Vicente, F. Rodrigues, A. Samagaio, C. Cardoso, Performance of a window shutter with phase change material under summer Mediterranean climate conditions. Appl. Therm. Eng. 84, 246–256 (2015). https://doi.org/10.1016/j.applthermaleng.2015.03.059

    Article  Google Scholar 

  31. K. Karthikeyan, V. Mariappan, P. Kalidoss, J. Mohana Jai Ganesh, P.V.R. Nanda Kishore, S. Prathiban, R. Anish, Characterization and thermal properties of lauryl alcohol-capric acid binary mixture with hybrid-nanoparticles as phase change material for vaccine storage applications. J. Energy Storage 74, 109442 (2023). https://doi.org/10.1016/j.est.2023.109442

    Article  Google Scholar 

  32. K. Yu, M. Jia, Y. Liu, Y. Yang, Binary decanoic acid/polyethylene glycol as a novel phase change material for thermal energy storage: eutectic behaviors and energy conservation evaluation. J. Energy Storage 68, 107663 (2023). https://doi.org/10.1016/j.est.2023.107663

    Article  Google Scholar 

  33. K. Karthikeyan, V. Mariappan, P. Kalidoss, R. Anish, P. Sarafoji, J. Venkatanageswara Reddy, T. Kumar Satpathy, Preparation and thermal characterization of capric-myristic acid binary eutectic mixture with silver–antimony tin oxide and silver–graphene nanoplatelets hybrid-nanoparticles as phase change material for building applications. Mater. Lett. 328, 133086 (2022). https://doi.org/10.1016/j.matlet.2022.133086

    Article  Google Scholar 

  34. M. He, D. Xie, L. Yin, K. Gong, K. Zhou, Influences of reduction temperature on energy storage performance of paraffin wax/graphene aerogel composite phase change materials. Mater. Today Commun. 34, 105288 (2023). https://doi.org/10.1016/j.mtcomm.2022.105288

    Article  Google Scholar 

  35. A. Genovese, G. Amarasinghe, M. Glewis, D. Mainwaring, R.A. Shanks, Crystallisation, melting, recrystallisation and polymorphism of n-eicosane for application as a phase change material. Thermochim. Acta 443, 235–244 (2006). https://doi.org/10.1016/j.tca.2006.02.008

    Article  Google Scholar 

  36. Z. Wang, J.H. Sun, S.L. Xie, G.X. Ma, Y.Z. Jia, Thermal properties and reliability of a lauric acid/nonanoic acid binary mixture as a phase-change material for thermal energy storage. Energy Technol. 5, 2309–2316 (2017). https://doi.org/10.1002/ente.201700349

    Article  Google Scholar 

  37. J.I. Wenhui, Y. Yanping, L.I. Yajun, Y.U. Min, Wall-attached night ventilation combined with phase change material wallboard in hot summer: an experimental study on the thermal performance. J. Therm. Sci. (2022). https://doi.org/10.1007/s11630-022-1577-x

    Article  Google Scholar 

  38. W. Wu, M. Xia, J. Huang, Y. Dou, Y. He, C. Guo, Q. Zhang, P. Lu, Preparation and characterization of binary and ternary composite PCMs with two phase transition temperatures for solar water heating system. Sol. Energy 231, 1015–1024 (2022). https://doi.org/10.1016/j.solener.2021.12.045

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Natural Science Foundation of China (52366015, 51966004), Natural Science Foundation of Jiangxi Province (20212BAB204029), and Jiangxi Province Graduate Innovation Special Fund Project (YC2022-S665).

Author information

Authors and Affiliations

Authors

Contributions

JZ: data curation, formal analysis, investigation, validation, writing—original draft. HF: conceptualization, funding acquisition, project administration, resources, writing—review and editing. QH: data curation, formal analysis. PL: data curation, writing—review and editing. YP: investigation, validation. XL: investigation.

Corresponding author

Correspondence to Hua Fei.

Ethics declarations

Conflict of interest

All authors disclosed no relevant relationships.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Fei, H., He, Q. et al. Structural characteristics and thermal performances of paraffin-based phase change materials for phase change sunshade. Appl. Phys. A 130, 196 (2024). https://doi.org/10.1007/s00339-024-07327-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-024-07327-8

Keywords

Navigation