Skip to main content
Log in

Influence of volume fraction on magnetodielectric effect in CoFe2O4–Ba0.8Sr0.2TiO3 multiferroic fluids

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The multiferroic fluids use an external field to rotate the magnetization/polarization direction of the multiferroic particles to form a chain structure with a clamping effect, which is expected to achieve the enhanced magnetodielectric effect. In this paper, CoFe2O4–Ba0.8Sr0.2TiO3 multiferroic fluids were successfully prepared by ball milling method. The effects of volume fraction (0.1%, 0.5%, 1%, 2%, and 5%) on the magnetodielectric effect were systematically investigated. The analysis of X-ray diffraction patterns confirms that both CoFe2O4 and Ba0.8Sr0.2TiO3 particles were prepared in the pure phase. With the increase of the volume fraction, the dielectric properties and magnetodielectric effect increase slightly. When the volume fraction is 5%, the multiferroic fluids have a maximum ɛr of 6.44 at 100 Hz. Under the action of a 74.65 mT magnetic field, the maximum dielectric constant is 8.57, with the maximum magnetodielectric coefficient of 27.1%. Under the discontinuous magnetic field, the “switching effect” was also found. Moreover, the CV curve demonstrates the nonlinear dielectric properties of multiferroic fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. S. Ikegawa, F.B. Mancoff, J. Janesky, S. Aggarwal, Magnetoresistive random access memory: present and future. IEEE Trans. Electron Devices 67, 1407–1419 (2020)

    Article  ADS  Google Scholar 

  2. S. Wang, H. Lee, F. Ebrahimi, P.K. Amiri, K.L. Wang, P. Gupta, Comparative evaluation of spin-transfer-torque and magnetoelectric random access memory. IEEE. J. Emerg. Sel. Topics Circuits Syst. 6, 134–145 (2016)

    Article  ADS  Google Scholar 

  3. P. Pan, J. Tao, F. Ma, N. Zhang, Magnetodielectric effect in (1–x)(Ba0.88Ca0.12)(Ti0.88Zr0.12)O3-xCoFe2O4. J. Magn. Magn. Mater. 453, 91–95 (2018)

    Article  ADS  Google Scholar 

  4. A. Chen, Y. Wen, B. Fang, Y. Zhao, Q. Zhang, Y. Chang, P. Li, H. Wu, H. Huang, Y. Lu, Z. Zeng, J. Cai, X. Han, T. Wu, X.-X. Zhang, Y. Zhao, Giant nonvolatile manipulation of magnetoresistance in magnetic tunnel junctions by electric fields via magnetoelectric coupling. Nat. Commun. 10, 243 (2019)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  5. T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, Y. Tokura, Magnetic control of ferroelectric polarization. Nature 426, 55–58 (2003)

    Article  ADS  PubMed  Google Scholar 

  6. G.H. Rather, M.U.D. Rather, N. Nazir, A. Ikram, M. Ikram, B. Want, Particulate multiferroic Ba0.99Tb0.02Ti0.99O3-CoFe1.8Mn0.2O4 composites: improved dielectric, ferroelectric and magneto-dielectric properties. J. Alloys Compd. 887, 161446 (2021)

    Article  Google Scholar 

  7. S. Pachari, S.K. Pratihar, B.B. Nayak, Microstructure driven magnetodielectric behavior in ex-situ combustion derived BaTiO3-ferrite multiferroic composites. J. Magn. Magn. Mater. 505, 166741 (2020)

    Article  Google Scholar 

  8. K. Kaur, M. Singh, J. Singh, S. Kumar, Multiferroic and magnetodielectric properties of (1–x)KNN-xCMgFO ceramic-based composites. J. Asian Ceram. Soc. 8, 1027–1035 (2020)

    Article  Google Scholar 

  9. M. Pal, A. Srinivas, S. Asthana, Enhanced magneto-electric properties and magnetodielectric effect in lead-free (1-x)0.94Na0.5Bi0.5TiO3-0.06BaTiO3–x CoFe2O4 particulate composites. J. Alloys Compd. 900, 163487 (2022)

    Article  Google Scholar 

  10. R. Jena, K. Chandrakanta, P. Pal, M.F. Abdullah, A.K. Singh, Observation of magnetodielectric properties in BTFO-LSMO composites synthesized via sol-gel precursor hybrid technique. Mater. Today Proc. 50, 837–841 (2022)

    Article  Google Scholar 

  11. R. Samad, M.U.D. Rather, K. Asokan, B. Want, Magneto-dielectric studies on multiferroic composites of Pr doped CoFe2O4 and Yb doped PbZrTiO3. J. Alloys Compd. 744, 453–462 (2018)

    Article  Google Scholar 

  12. R.P. Bonini, A.J. Gualdi, J.A. Eiras, F.L. Zabotto, Strain-induced modulation of magnetodielectric and magnetoelectric coupling in pzt/cfo thin films grown by rf-sputtering. J. Magn. Magn. Mater. 552, 169196 (2022)

    Article  Google Scholar 

  13. X. Lv, J. Liu, J. Zhao, M. Wang, Z. Pan, Microstructure, magnetodielectric and multiferroic properties in PVDF-based sandwich-structured composites. J. Alloys Compd. 918, 165772 (2022)

    Article  Google Scholar 

  14. S.M. Mane, S.A. Pawar, D.S. Patil, S.B. Kulkarni, N.T. Tayade, J.C. Shin, Magnetoelectric, magnetodielectric effect and dielectric, magnetic properties of microwave-sintered lead-free x(Co0.9Ni0.1Fe2O4)-(1-x)[0.5(Ba0.7Ca0.3TiO3)-0.5(BaZr0.2Ti0.8O3)] particulate multiferroic composite. Ceram. Int. 46, 3311–3323 (2020)

    Article  Google Scholar 

  15. J. Li, Y. Pu, Y. Shi, R. Shi, X. Wang, M. Yang, W. Wang, X. Guo, X. Peng, Dielectric, multiferroic and magnetodielectric properties of (1–x)BaTiO3-xSr2CoMoO6 solid solution. Ceram. Int. 45, 16353–16360 (2019)

    Article  Google Scholar 

  16. Y. Pu, J. Li, X. Wang, Y. Shi, R. Shi, M. Yang, W. Wang, X. Guo, X. Peng, Strong non-volatile voltage control of magnetization and the magnetodielectric properties in polymer-based sandwich-structured composites. Compos. Sci. Technol. 186, 107931 (2020)

    Article  Google Scholar 

  17. K. Jin, Y. Kou, X. Zheng, The resonance frequency shift characteristic of Terfenol-D rods for magnetostrictive actuators. Smart Mater. Struct. 21, 045020 (2012)

    Article  ADS  Google Scholar 

  18. Y.P. Yao, Y. Hou, S.N. Dong, X.G. Li, Giant magnetodielectric effect in Terfenol-D/PZT magnetoelectric laminate composite. J. Appl. Phys. 110, 014508 (2011)

    Article  ADS  Google Scholar 

  19. R. Gao, Z. Xu, L. Bai, Q. Zhang, Z. Wang, W. Cai, G. Chen, X. Deng, X. Cao, X. Luo, C. Fu, Electric field-induced magnetization rotation in magnetoelectric multiferroic fluids. Adv. Electron. Mater. 4, 1800030 (2018)

    Article  Google Scholar 

  20. R. Gao, Q. Zhang, Z. Xu, Z. Wang, G. Chen, C. Fu, X. Deng, W. Cai, Anomalous magnetoelectric coupling effect of CoFe2O4–BaTiO3 binary mixed fluids. ACS Appl. Electron. Mater. 1, 1120–1132 (2019)

    Article  Google Scholar 

  21. S. Shankar, O.P. Thakur, M. Jayasimhadri, Conductivity behavior and impedance studies in BaTiO3–CoFe2O4 magnetoelectric composites. Mater. Chem. Phys. 234, 110–121 (2019)

    Article  Google Scholar 

  22. S. Ahmed, M. Atif, A.U. Rehman, S. Bashir, N. Iqbal, W. Khalid, Z. Ali, M. Nadeem, Enhancement in the magnetoelectric and energy storage properties of core-shell-like CoFe2O4−BaTiO3 multiferroic nanocomposite. J. Alloys Compd. 883, 160875 (2021)

    Article  Google Scholar 

  23. S.M. Mane, P.M. Tirmali, B. Ranjit, M. Khan, N. Khan, A.N. Tarale, S.B. Kulkarni, Studies on magnetocapacitance, dielectric, ferroelectric, and magnetic properties of microwave sintered (1-x)(Ba0.8Sr0.2TiO3)-x(Co0.9Ni0.1Fe2O4) multiferroic composite. Solid State Sci. 81, 43–50 (2018)

    Article  ADS  Google Scholar 

  24. X. Qin, R. Xu, H. Wu, G. Rongli, Z. Wang, G. Chen, C. Fu, X. Deng, W. Cai, A comparative study on the dielectric and multiferroic properties of Co0.5Zn0.5Fe2O4/Ba0.8Sr0.2TiO3 composite ceramics. Process Appl. Ceram. 13, 349–359 (2019)

    Article  Google Scholar 

  25. B.J. Rani, M. Ravina, B. Saravanakumar, G. Ravi, V. Ganesh, S. Ravichandran, R. Yuvakkumar, Ferrimagnetism in cobalt ferrite (CoFe2O4) nanoparticles. Nano-Struct Nano-Objects 14, 84–91 (2018)

    Article  Google Scholar 

  26. H. Wu, R. Xu, C. Zhou, S. Xing, Z. Zeng, H. Ao, W. Li, X. Qin, R. Gao, Effect of core size on the magnetoelectric properties of Cu0.8Co0.2Fe2O4@Ba0.8Sr0.2TiO3 ceramics. J. Phys. Chem. Solids 160, 110314 (2022)

    Article  Google Scholar 

  27. H. Wu, Y. Zhang, H. Ao, S. Zhong, Z. Zeng, W. Li, R. Gao, C. Fu, G. Chen, X. Deng, Z. Wang, X. Lei, W. Cai, Controlling magnetoelectric coupling effect of CoFe2O4–Ba0.8Sr0.2TiO3 multiferroic fluids by viscosity. New J. Chem. 47, 4113–4125 (2023)

    Article  Google Scholar 

  28. G. Sun, M. Lan, Y. Zhang, S. Zong, H. Li, C. Chen, K. Ren, Y. Ding, X. Deng, R. Gao, W. Cai, C. Fu, G. Chen, Z. Wang, X. Lei, Enhanced magnetoelectric coupling performance in CoFe2O4@BaTiO3 multiferroic liquid by tuning the CoFe2O4 morphology. Mater. Today Commun. 37, 107423 (2023)

    Article  Google Scholar 

  29. H. Wu, R. Xu, X. Qin, R. Gao, S. Zhang, C. Zhou, S. Xing, W. Cai, Enhancement of magnetoelectric properties and coupling coefficient of Co1−xCuxFe2O4/Ba0.8Sr0.2TiO3 composite liquid. J. Mater. Sci. Mater. Electron. 31, 885–895 (2020)

    Article  Google Scholar 

  30. S.A. Basun, G. Cook, V.Y. Reshetnyak, A.V. Glushchenko, D.R. Evans, Dipole moment and spontaneous polarization of ferroelectric nanoparticles in a nonpolar fluid suspension. Phys. Rev. B 84, 024105 (2011)

    Article  ADS  Google Scholar 

  31. K.N. Nordstrom, E. Verneuil, P.E. Arratia, A. Basu, Z. Zhang, A.G. Yodh, J.P. Gollub, D.J. Durian, Microfluidic rheology of soft colloids above and below jamming. Phys. Rev. Lett. 105, 175701 (2010)

    Article  ADS  PubMed  Google Scholar 

  32. R. Gao, Q. Leng, Z. Wang, G. Chen, C. Fu, X. Deng, W. Cai, Magnetocapacitance and magnetoelectric coupling effect of Ni0.5Cu0.5Fe2O4 /BaTiO3 mixed multiferroic fluids. Mater. Res. Express 6, 026308 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The present work has been supported by the Scientific and Technological Research Program of Chongqing Municipal Education Commission (KJZD-K20220150), the Program for Creative Research Groups in University of Chongqing (CXQT19031), the Chongqing Research Program of Basic Research and Frontier Technology (cstc2021jcyj–msxmX0008, cstc2021jcyj–msxmX0039, cstc2021jcyj–msxmX0599), the special project for technological innovation and application development of Chongqing Science and technology enterprises (cstc2021kqjscx–phxmX0008), the undergraduate technology innovation project of Chongqing University of Science and Technology (Grant Nos. 2023172, 2023176), the Postgraduate Technology Innovation project of Chongqing (Grant Nos. CYS23743), and the Postgraduate Technology Innovation Project of Chongqing University of Science and Technology (YKJCX2220222, YKJCX2220224).

Author information

Authors and Affiliations

Authors

Contributions

HA: writing—original draft, methodology, investigation, formal analysis, conceptualization. CC: writing—review and editing, investigation, formal analysis. HW: investigation, formal analysis, visualization. YZ: writing—review and editing, formal analysis, data curation. YD, HW: investigation, visualization. RG, XD, GM: writing—review and editing, supervision, project administration, funding acquisition. WC, CF, YM: writing—review and editing, supervision, project administration, resources.

Corresponding authors

Correspondence to Gang Meng or Rongli Gao.

Ethics declarations

Conflict of interest

The authors declare that they have no financial and personal relationships with other people or organizations that can inappropriately influence our work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ao, H., Chen, C., Mu, H. et al. Influence of volume fraction on magnetodielectric effect in CoFe2O4–Ba0.8Sr0.2TiO3 multiferroic fluids. Appl. Phys. A 130, 182 (2024). https://doi.org/10.1007/s00339-024-07322-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-024-07322-z

Keywords

Navigation