Skip to main content
Log in

Study the effect of doping cobalt ions into Zn(2−x)CoxSiO4 [x = 0, 0.056 and 0.167] structures on the optical properties and color parameters: experiment and calculation

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Synthesis of high-color intensity blue pigments and using less amount of cobalt is intended in many papers. We also tried to study a highly intensified blue pigment using the least amount of cobalt in experimental and theoretical methods. In this work, the Zn(2−x)CoxSiO4 [x = 0, 0.056, and 0.167] structures were synthesized by the conventional ceramic method. Theoretical calculations were performed using DFT, DFT + U, and many-body Fxc kernel for the long-range correction (LRC) model. We studied the structural, electronic, and optical properties of the structures. A good match was observed between the experimental and theoretical results for all doped and undoped samples. The calculations of electronic properties revealed a decrease in the gap and Fermi energies of the theoretical samples as the doping concentration increased. The optical analysis, which utilizes UV–Vis spectroscopy and CIE L*a*b* calorimetric methods, showed a high blue color intensity (b* = − 49.3, − 46.71) obtained for pigments. Additionally, a comparison was made between the gap energy and color of the experimental and the theoretical samples. These findings highlight the capability of DFT, DFT + U, and Fxc kernel for the LRC model for ceramic pigments.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The manuscript has no associated data.

References

  1. N. Gorodylova, V. Kosinová, Ž Dohnalová, P. Bělina, P. Šulcová, New purple-blue ceramic pigments based on CoZr4 (PO4) 6. Dyes Pigm. 98(3), 393–404 (2013)

    Article  Google Scholar 

  2. F. Habashi, Pigments through the ages. Interceram-Int. Ceram. Rev. 65, 156–165 (2016)

    Article  Google Scholar 

  3. A.A. Ali, I.S. Ahmed, Sol-gel auto-combustion fabrication and optical properties of cobalt orthosilicate: utilization as coloring agent in polymer and ceramic. Mater. Chem. Phys. 238, 121888 (2019)

    Article  Google Scholar 

  4. Z.-Z. Chen et al., Preparation of nanosized cobalt aluminate powders by a hydrothermal method. Mater. Sci. Eng. B 107(2), 217–223 (2004)

    Article  Google Scholar 

  5. E. Enríquez, J. Reinosa, V. Fuertes, J. Fernández, Advances and challenges of ceramic pigments for inkjet printing. Ceram. Int. 48, 31080 (2022)

    Article  Google Scholar 

  6. S. Vaselnia, M.K. Aminian, H. Motahari, R.D. Banadaki, A joint experimental and theoretical study on the structural, electronic and optical properties of malayaite and chromium-doped malayaite structures as pigments. J. Phys. Chem. Solids 141, 109402 (2020)

    Article  Google Scholar 

  7. S. Vaselnia, M.K. Aminian, R.D. Banadaki, Experimental and theoretical study on the structural, electronic, and optical properties within DFT+ U, Fxc kernel for LRC model, and BSE approaches. Part I: CoTiO3 and Co2TiO4 pigments. Powder Technol. 390, 50–61 (2021)

    Article  Google Scholar 

  8. G. Costa et al., Ni-doped hibonite (CaAl12O19): a new turquoise blue ceramic pigment. J. Eur. Ceram. Soc. 29(13), 2671–2678 (2009)

    Article  Google Scholar 

  9. S. Vaselnia, M. Khajeh-Aminian, R. Dehghan-Banadaki, Synthesis of Fe-doped titanite and quasi-titanite structures and studying the effect of doping on physical and optical properties. Progress Color, Colorants Coat. 11(4), 221–231 (2018)

    Google Scholar 

  10. K. Pratibha, H. Kaur, S. Shankar, S. Gaurav, Y. Dwivedi, Influence of annealing temperature on structural, optical and electrical properties of zinc silicate (Zn2SiO4) nanophosphors. Physica B 658, 414836 (2023)

    Article  Google Scholar 

  11. I. Ahmed, H. Dessouki, A. Ali, Synthesis and characterization of new nano-particles as blue ceramic pigment. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 71(2), 616–620 (2008)

    Article  ADS  Google Scholar 

  12. E. Grazenaite, E. Garskaite, Z. Stankeviciute, E. Raudonyte-Svirbutaviciene, A. Zarkov, A. Kareiva, Ga-substituted cobalt-chromium spinels as ceramic pigments produced by sol–gel synthesis. Crystals 10(12), 1078 (2020)

    Article  Google Scholar 

  13. M. Benchikhi, R. Hattaf, R. El Ouatib, Sol–Gel-assisted molten-salt synthesis of Co2SiO4 pigments for ceramic tiles application. SILICON 15(4), 2003–2010 (2023)

    Google Scholar 

  14. N.M. Rasdi, Y.W. Fen, N.A.S. Omar, M.H.M. Zaid, Effects of cobalt doping on structural, morphological, and optical properties of Zn2SiO4 nanophosphors prepared by sol-gel method. Results in physics 7, 3820–3825 (2017)

    Article  ADS  Google Scholar 

  15. Q. Tang et al., Preparation and characterization of nanoscale cobalt blue pigment for ceramic inkjet printing by sol-gel self-propagating combustion. Mater. Res. 20, 1340–1344 (2017)

    Article  Google Scholar 

  16. J.-H. Kim et al., Characterization of blue CoAl2O4 nano-pigment synthesized by ultrasonic hydrothermal method. Ceram. Int. 38(7), 5707–5712 (2012)

    Article  Google Scholar 

  17. C. Feldmann, Preparation of nanoscale pigment particles. Adv. Mater. 13(17), 1301–1303 (2001)

    Article  Google Scholar 

  18. M. Khajeh-Aminian, T. Azizi, R. Dehghan, M. Hakimi, Synthesis and characterization of CoAl2O4 nano pigments by polyol method. Progress Color, Colorants Coat. 10(4), 231–238 (2017)

    Google Scholar 

  19. P.Q. Nguyen, D. Zhang, R. Rapp, J.P. Bradley, P. Dera, Room temperature facile synthesis of olivine-Co 2 SiO 4 nanoparticles utilizing a mechanochemical method. RSC Adv. 11(34), 20687–20690 (2021)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  20. M. Dondi, C. Zanelli, M. Ardit, G. Cruciani, Co-doped hardystonite, Ca2 (Zn, Co) Si2O7, a new blue ceramic pigment. J. Am. Ceram. Soc. 94(4), 1025–1030 (2011)

    Article  Google Scholar 

  21. A. Forés, M. Llusar, J. Badenes, J. Calbo, M. Tena, G. Monrós, Cobalt minimisation in willemite (CoxZn2−xSiO4) ceramic pigments. Green Chem. 2(3), 93–100 (2000)

    Article  Google Scholar 

  22. E. Ozel, H. Yurdakul, S. Turan, M. Ardit, G. Cruciani, M. Dondi, Co-doped willemite ceramic pigments: technological behaviour, crystal structure and optical properties. J. Eur. Ceram. Soc. 30(16), 3319–3329 (2010)

    Article  Google Scholar 

  23. S. Fatah, M.K. Aminian, Cobalt-willemite and spinel as fractal blue nanopigments based on clinoptilolite zeolite: synthesis, physical properties, and cool coating application. J. Solid State Chem. 307, 122753 (2022)

    Article  Google Scholar 

  24. N. Bekturganov, M. Bissengaliyeva, D. Gogol, Calculation of vibrational spectra and thermodynamic functions of a natural zinc silicate-willemite. Eurasian Chem. Technol. J. 15(3), 227–232 (2013)

    Article  Google Scholar 

  25. R. Dai et al., Tunnel-structured willemite Zn2SiO4: electronic structure, elastic, and thermal properties. J. Adv. Ceram. 11(8), 1249–1262 (2022)

    Article  Google Scholar 

  26. S. Fatah, M.K. Aminian, M. Bahamirian, Multifunctional superhydrophobic and cool coating surfaces of the blue ceramic nanopigments based on the heulandite zeolite. Ceram. Int. 48(15), 21954–21966 (2022)

    Article  Google Scholar 

  27. S. Vaselnia, M.K. Aminian, H. Motahari, Fe-doped titanite pigment: Synthesis, DFT/TDDFT calculations by Lanczos and Bethe–Salpeter equation methods and comparison of computational and experimental color properties. J. Phys. Chem. Solids 138, 109244 (2020)

    Article  Google Scholar 

  28. M.H. Bashir, M. Sohail, S.M. Ul-Hassan, T. Nawaz, DFT calculations using quantum ESPRESSO for optical and electronic properties of Si crystal. Key Eng. Mater. 928, 199–206 (2022)

    Article  Google Scholar 

  29. M. Rizwan, I. Zeba, M. Shakil, S. Gillani, Z. Usman, Electronic, structural and optical properties of BaTiO3 doped with lanthanum (La): Insight from DFT calculation. Optik 211, 164611 (2020)

    Article  ADS  Google Scholar 

  30. X. Ma, Y. Zhang, L. Dong, R. Jia, First-principles calculations of electronic and optical properties of aluminum-doped β-Ga2O3 with intrinsic defects. Results Phys. 7, 1582–1589 (2017)

    Article  ADS  Google Scholar 

  31. S. Vaselnia, M.K. Aminian, R.D. Banadaki, Experimental and theoretical study on the structural, electronic, and optical properties within DFT+ U, Fxc kernel for LRC model, and BSE approaches. Part II: CoSiO3 and Co2SiO4 pigments. Powder Technol. 397, 116999 (2022)

    Article  Google Scholar 

  32. J. Wang, B. Li, C.-H. Zhang, First-principles study of the effect of V Co, Ca, Sr, Ga, As doping on the mechanical properties of Al2Cu. Appl. Phys. A 127(8), 637 (2021)

    Article  ADS  Google Scholar 

  33. A.I. Saville et al., MAUD rietveld refinement software for neutron diffraction texture studies of single-and dual-phase materials. Integr. Mater. Manuf. Innov. 10(3), 461–487 (2021)

    Article  Google Scholar 

  34. B.J. Rani et al., Pure and cobalt-substituted zinc-ferrite magnetic ceramics for supercapacitor applications. Appl. Phys. A 124, 1–12 (2018)

    Article  ADS  Google Scholar 

  35. P. Hasan et al., Tunable optical and structural characteristics with improved electrical properties of (PVA-GO-CuO) eco-friendly-polymer nanocomposites and their DFT study. Diam. Relat. Mater. 140, 110425 (2023)

    Article  ADS  Google Scholar 

  36. G. Cao, Nanostructures & nanomaterials: synthesis, properties & applications (Imperial college press, 2004)

    Book  Google Scholar 

  37. K. Baishya, J.S. Ray, P. Dutta, P.P. Das, S.K. Das, Graphene-mediated band gap engineering of WO 3 nanoparticle and a relook at Tauc equation for band gap evaluation. Appl. Phys. A 124, 1–6 (2018)

    Article  Google Scholar 

  38. M. Llusar, A. Forés, J. Badenes, J. Calbo, M. Tena, G. Monrós, Colour analysis of some cobalt-based blue pigments. J. Eur. Ceram. Soc. 21(8), 1121–1130 (2001)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Simorgh Supercomputer—Amirkabir University of Technology under Contract No. ISI-DCE-DOD-Cloud-900808-1700.

Author information

Authors and Affiliations

Authors

Contributions

RDB: synthesis, formal analysis, writing-original draft, methodology, resources, and investigation. MKA: validation, writing—review and editing, conceptualization, supervision, and project administration. SYV theoretical calculation, revision, conceptualization, data curation, and visualization.

Corresponding author

Correspondence to M. Khajeh Aminian.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dehghan Banadaki, R., Khajeh Aminian, M. & Vaselnia, S.Y. Study the effect of doping cobalt ions into Zn(2−x)CoxSiO4 [x = 0, 0.056 and 0.167] structures on the optical properties and color parameters: experiment and calculation. Appl. Phys. A 130, 162 (2024). https://doi.org/10.1007/s00339-024-07309-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-024-07309-w

Keywords

Navigation