Skip to main content
Log in

An influence of neodymium (Nd3+) doping on physicochemical properties of monoclinic lanthanum arsenate (LaAsO4) nanomaterials

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This paper reports synthesis by wet chemical route for neodymium doped lanthanum arsenates nanoparticles with chemical formula NdxLa1−xAsO4 (x = 0.0, 0.05, 0.10 and 0.15) and its characterization. Powder X-ray diffraction (PXRD) confirms monoclinic structure of the prepared nanomaterials. Crystallite size decreases with increasing concentration of Nd3+ ions. PXRD results are further validated by Rietveld refinement with low values of goodness factor (χ2). Morphology has been investigated by high resolution transmission electron microscopy (HRTEM) equipped with selected area electron diffraction (SAED) which shows the crystalline nature of nanomaterials. Various functional groups present have been studied by FTIR spectroscopy. The optical band gap calculated using UV–Vis diffuse reflectance spectroscopy is found to decrease with increasing dopant concentration. The emission spectrum studied by applying photoluminescence (PL) spectroscopy. At 315 nm excitation, the NdxLa1−xAsO4 exhibits a bright red emission with emission peaks in the range of 610–630 nm. Chromaticity plot shows that chromaticity coordinates are located in the red region. The dielectric analysis carried out to study variation of dielectric constant with frequency over range of 1–25 kHz and temperature range of 20–200 °C. The conductivity measurements are carried out and activation energy has been calculated. The variation of electrical modulus with frequency has also been observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Data and code availability

Most of the data is available in the text and figure itself. However, the other data is available on reasonable request.

References

  1. D. Kuse, Opt ische Absorptionsspektren und Kristallfeldaufspaltungen des Er3+-ions in YPO4 und YVO4. Z. Phys. 203, 49–58 (1967). https://doi.org/10.1007/BF01326059

    Article  ADS  Google Scholar 

  2. C. Brecher, H. Samelson, A. Lempicki, R. Riley, T. Peters, Polarized spectra and crystal-field parameters of Eu+3 in YVO4. Phys. Rev. 155, 178–187 (1967). https://doi.org/10.1103/PhysRev.155.178

    Article  ADS  Google Scholar 

  3. M. Abraham, L.A. Boatner, T.C. Quinby, K. Thomas, M. Rappaz, Preparation and compaction of synthetic monazite powders. Radioact. Waste Manag. 1, 181–191 (1980)

    Google Scholar 

  4. H. Schwarz, Die phosphate, arsenate und Vanadate der Seltenen Erden. Z. Anorg. Allge Chem. 323, 44–56 (1963). https://doi.org/10.1002/zaac.19633230106

    Article  Google Scholar 

  5. R.C.L. Mooney, Crystal structures of a series of rare earth phosphates. J. Chem. Phys. 16, 1003–1004 (1948). https://doi.org/10.1063/1.1746668

    Article  ADS  Google Scholar 

  6. I.L. Botto, E.J. Baran, Characterization of the monoclinic rare earth orthoarsenates. J. Less Common Met. 83, 255–261 (1982). https://doi.org/10.1016/0022-5088(82)90275-2

    Article  Google Scholar 

  7. D. Errandonea, R. Kumar, J.L. Solano, P.R. Hernandez, A. Munoz, M.G. Rabie, R.S. Puche, Experimental and theoretical study of structural properties and phase transitions in YAsO4 and YCrO4. Phys. Rev. B 83, 134109 (2011). https://doi.org/10.1103/PhysRevB.83.134109

    Article  ADS  Google Scholar 

  8. I.H. Ismailzade, A.I. Alekberov, R.M. Ismailov, R.K. Asadova, Ferroelectricity in the crystals RAsO4. Ferroelectrics 23, 35–38 (1980). https://doi.org/10.1080/00150198008224808

    Article  ADS  Google Scholar 

  9. K. Toyoura, K. Matsunaga, Hydrogen bond dynamics in proton-conducting lanthanum. J. Phys. Chem. C 117, 18006–18012 (2013). https://doi.org/10.1021/jp406701w

    Article  Google Scholar 

  10. U. Kolitsch, D. Holstam, Crystal chemistry of REEXO4 compounds (X = P, As, V) II review of REEXO4 compounds and their stability fields. Eur. J. Mineral. 16, 117–126 (2004). https://doi.org/10.1127/0935-1221/2004/0016-0117

    Article  ADS  Google Scholar 

  11. G. Barros, C.C. Santos, A.P. Ayala, I. Guedes, L.A. Boatner, C.K. Loong, Raman investigations of rare-earth arsenate single crystals. J. Raman Spectrosc. 41, 694–697 (2010). https://doi.org/10.1002/jrs.2497

    Article  ADS  Google Scholar 

  12. A.K. Pradhan, R.N.P. Choudhary, Dielectric and thermal properties of LaAsO4. J. Mat. Sci. 22, 2955–2958 (1987). https://doi.org/10.1007/BF01086496

    Article  ADS  Google Scholar 

  13. R.S. Feigelson, Crystal growth of rare-earth orthoarsenates. J. Am. Ceram. 50, 433–434 (1967). https://doi.org/10.1111/j.1151-2916.1967.tb15150.x

    Article  Google Scholar 

  14. N.T.P. Loan, N.D.Q. Anh, Enhancing optical performance of dual-layer remote phosphor structures with the application of LaAsO4:Eu3+ and Y2O3:Ho3+. Optoelectron. Adv. Mater. Rapid Commun. 15, 71–78 (2021)

    Google Scholar 

  15. J.F. Berre, R. Gauvin, G.P. Demopoulos, Synthesis, structure, and stability of gallium arsenate dihydrate, indium arsenate dihydrate, and lanthanum arsenate. Ind. Eng. Chem. Res. 46, 7875–7882 (2007). https://doi.org/10.1021/ie061514v

    Article  Google Scholar 

  16. A. Strzep, A. Watras, K. Zawisza, P. Boutinaud, R.J. Wiglusz, Forgotten and resurrected chernovite-(Y): YAsO4 Doped with Eu3+ ions as a potential nanosized luminophore. Inorg. Chem. 56, 10914–10925 (2017). https://doi.org/10.1021/acs.inorgchem.7b01089

    Article  PubMed  Google Scholar 

  17. N. Adala, B. Marzougui, Y.B. Smida, R. Marzouki, M. Ferhi, D.C. Onwudiwe, A.H. Hamzaoui, An experimental and theoretical study of the structural, optical, electrical and dielectric properties of PrAsO4. J. Alloys Compd. 910, 164894 (2022). https://doi.org/10.1016/j.jallcom.2022.164894

    Article  Google Scholar 

  18. V. Kumar, R. Kumar, K. Sen, Crystal field analysis of Zircon structure Nd3+: YVO4and TbPO4 crystals. Phys. Stat. Sol. B 99, 17–21 (1980). https://doi.org/10.1002/pssb.2220990151

    Article  ADS  Google Scholar 

  19. https://materialsproject.org/materials/mp-4917

  20. L. Sun, X. Zhao, Y. Li, P. Li, H. Sun, X. Cheng, W. Fan, First-principles studies of electronic, optical, and vibrational properties of LaVO4 polymorph. J. Appl. Phys. 108, 093519 (2010). https://doi.org/10.1063/1.3499308

    Article  ADS  Google Scholar 

  21. G. Gul, F. Kurtulus, LaVO4, LaPO4 and LaBO3: synthesis, Rietveld refinement and comparison of optical properties. Optoelectron. Adv. Mater. Rapid Commun. 13, 126–130 (2019)

    Google Scholar 

  22. Z. Wu, S. Yang, W. Wu, Shape control of inorganic nanoparticles from solution. Nanoscale 8, 1237–1259 (2016). https://doi.org/10.1039/c5nr07681a

    Article  ADS  PubMed  Google Scholar 

  23. Z. Chai, Z. Yang, A. Huang, C. Yu, J. Qiu, Z. Song, Preparation and photoluminescence enhancement of Au nanoparticles embedded LaPO4: Eu3+ inverse opals. J. Am. Ceram. Soc. 101, 2689–2694 (2018). https://doi.org/10.1111/jace.15444

    Article  Google Scholar 

  24. A. Wahish, U. AlBinni, L. Tetard, C.A. Bridges, K. Kharel, O.G. Sen, A. Huq, J.L. Musfeldt, M.P. Paranthaman, D. Mandrus, Structure and dynamics investigations of Sr/Ca-doped LaPO4 proton conductors. J. Phys. Chem. C 121, 11991–12002 (2017). https://doi.org/10.1021/acs.jpcc.7b02254

    Article  Google Scholar 

  25. Y. Kumar, S. Tripathi, M. Nand, R. Jangir, V. Srihari, A. Das, R. Singh, U. Deshpande, S.N. Jha, A. Arya, Structural and optical properties of Nd doped LaPO4. J. Alloys Compds 925, 166772 (2022). https://doi.org/10.1016/j.jallcom.2022.166772

    Article  Google Scholar 

  26. M. Xie, M. Gao, Y. Yun, M. Malmsten, V.M. Rotello, R. Zboril, O. Akhavan, A. Kraskouski, J. Amalraj, X. Cai, J. Lu, H. Zheng, R. Li, Angew. Chem. Int. Ed. 62, e202217345 (2023). https://doi.org/10.1002/anie.202217345

    Article  Google Scholar 

  27. X.M. Ge, S.H. Chan, Lanthanum strontium vanadate as potential anodes for solid oxide fuel cells. J. Electrochem. Soc. 156, 386–391 (2009). https://doi.org/10.1149/1.3058585

    Article  Google Scholar 

  28. C.J. Jia, L.D. Sun, Z.G. Yan, Y.C. Pang, S.Z. Lu, C.H. Yan, Monazite and zircon type LaVO4: Eu nanocrystals-synthesis, luminescent properties and spectroscopic identification of the Eu3+ Sites. Eur. J. Inorg. Chem. 2010, 2626–2635 (2010). https://doi.org/10.1002/ejic.201000038

    Article  Google Scholar 

  29. B.D. Cullity, Elements of X-Ray Diffraction, 2nd edn. (Addison-Wesley, Philippines, 1978)

    Google Scholar 

  30. E.H. Kisi, Rietveld analysis of powder diffraction patterns. Mater. Forum 18, 135–153 (1994)

    Google Scholar 

  31. R.A. Young, The Rietveld Method (International Union of Crystallography/Oxford University Press, Great Britain, 1993)

    Book  Google Scholar 

  32. A.A. Bagade, V.V. Ganbavle, S.V. Mohite, T.D. Dongale, B.B. Sinha, K.Y. Rajapure, Assessment of structural, morphological, magnetic and gas sensing properties of CoFe2O4 thin films. J. Colloid Interface Sci. 497, 181–192 (2017). https://doi.org/10.1016/j.jcis.2017.02.067

    Article  ADS  PubMed  Google Scholar 

  33. S. Anand, S. Pauline, V.M. Vinosel, M.A. Janifer, Structural Rietveld refinement and vibrational study of M-type BaFe12O19 nanoparticles. Mater. Today Proc. 8, 476–483 (2019). https://doi.org/10.1016/j.matpr.2019.02.141

    Article  Google Scholar 

  34. S. Sahu, L. Mallik, S. Pahi, B. Barik, U.K. Sahu, M. Sillanp, R.K. Patel, Facile synthesis of poly o-toluidine modified lanthanum phosphate nanocomposite as a superior adsorbent for selective fluoride removal: a mechanistic and kinetic study. Chemosphere 252, 126551 (2020). https://doi.org/10.1016/j.chemosphere.2020.126551

    Article  PubMed  Google Scholar 

  35. P. Li, X. Zhao, C. Jia, H. Sun, Y. Li, L. Sun, X. Cheng, L. Liu, W. Fan, Mechanism of morphology transformation of tetragonal phase LaVO4 nanocrystals controlled by surface chemistry: experimental and theoretical insights. Cryst. Growth Des. 12, 5042–5050 (2012). https://doi.org/10.1021/cg3009927

    Article  Google Scholar 

  36. S. Lotfi, M. Ouardi, H.A. Ahsaine, V. Madigou, A. Baqais, A. Assani, M. Saadi, M. Arab, Low-temperature synthesis, characterization and photocatalytic properties of lanthanum vanadate LaVO4. Heliyon 9, e17255 (2023)

    Article  PubMed  PubMed Central  Google Scholar 

  37. C.T. Au, W.D. Zhang, H.L. Wan, Preparation and characterization of rare earth orthovanadates for propane oxidative dehydrogenation. Catal. Lett. 37, 241–246 (1996). https://doi.org/10.1007/BF00807761

    Article  Google Scholar 

  38. C.H. Yan, I.D. Sun, C.S. Liao, Y.X. Zhang, Y.Q. Lu, S.H. Huang, S.Z. Lu, Eu3+ ion as fluorescent probe for detecting the surface effect in nanocrystals. Appl. Phys. Lett. 82, 3511–3513 (2003). https://doi.org/10.1063/1.1575504

    Article  ADS  Google Scholar 

  39. P.K. Dorhout, D.M. Sabel, A.B. Ellis, Structural and optical properties of hydrated lanthanon uranyl arsenates. J. Less Common Met. 156, 439–449 (1989). https://doi.org/10.1016/0022-5088(89)90437-2

    Article  Google Scholar 

  40. H.X. Mai, Y.W. Zhang, L.D. Sun, C.H. Yan, Orderly aligned and highly luminescent monodisperse rare-earth orthophosphate nanocrystals synthesized by a limited anion-exchange reaction. Chem. Mater. 19, 4514–4522 (2007). https://doi.org/10.1021/cm071073l

    Article  Google Scholar 

  41. M.A. Gomeza, H. Assaaoudi, L. Becze, J.N. Cutler, G.P. Demopoulosa, Vibrational spectroscopy study of hydrothermally produced scorodite (FeAsO4·2H2O), ferric arsenate sub–hydrate (FAsH;FeAsO4·0.75H2O) and basic ferric arsenate sulfate (BFAS; Fe[(AsO4)1x(SO4)x(OH)x]·wH2O). J. Raman Spectrosc. 41, 212–221 (2010). https://doi.org/10.1002/jrs.2419

    Article  ADS  Google Scholar 

  42. J. Lui, Y. Li, General synthesis of colloidal rare earth orthovanadate nanocrystals. J. Mater. Chem. 17, 1797–1803 (2007). https://doi.org/10.1039/b617959b

    Article  Google Scholar 

  43. R.K. Selvan, A. Gedankan, P. Anilkumar, G. Manikandan, C. Karunakaran, Synthesis and characterization of rare earth orthovanadate (RVO4; R = La, Ce, Nd, Sm, Eu & Gd) nanorods/nanocrystals/nanospindles by a facile sonochemical method and their catalytic properties. J. Cluster Sci. 20, 291–305 (2009). https://doi.org/10.1007/s10876-008-0229-y

    Article  Google Scholar 

  44. J. Tauc, R. Grigorovici, A. Vancu, Optical properties and electronic structure of amorphous germanium. Phys. Status Solidi B 15, 627–637 (1966). https://doi.org/10.1002/pssb.19660150224

    Article  ADS  Google Scholar 

  45. T. Simsek, A. Ceylan, G.S. Askin, S. Ozcan, Band gap engineering of Zno nanocrystallites prepared via ball-milling. J. Polytech. 25, 89–94 (2022). https://doi.org/10.2339/politeknik.647702

    Article  Google Scholar 

  46. H. Irzaman, A.M. Hardhienata, H.A. Aminullah, The Effects of lanthanum dopant on the structural and optical properties of ferroelectric thin films. Rare Earth Elem (2017). https://doi.org/10.5772/intechopen.69029

    Article  Google Scholar 

  47. T. Mizokawa, T. Nambu, A. Fujimori, M. Kawasaki, Electronic structure of the oxide-diluted magnetic semiconductor Zn1−xMnxO. Phys. Rev. B 65, 085209 (2002). https://doi.org/10.1103/PhysRevB.65.085209

    Article  ADS  Google Scholar 

  48. G.S. Ofelt, Intensities of crystal spectra of rare-earth Ions. J. Chem. Phys. 37, 511–520 (1962)

    Article  ADS  Google Scholar 

  49. B.R. Judd, Optical absorption intensities of rare-earth ions. Phys. Rev. 127, 750–761 (1962)

    Article  ADS  Google Scholar 

  50. A.A. Ansari, N. Singh, A.F. Khan, S.P. Singh, K. Iftikhar, Solvent effect on optical properties of hydrated lanthanide tris-acetylacetone. J. Lumin. 127, 446–452 (2007)

    Article  Google Scholar 

  51. A.A. Ansari, M. Alam, J.P. Labis, S.A. Alrokayan, G. Shafi, T.N. Hasan, N.A. Syed, A.A. Alshatwi, Luminescent mesoporous LaVO4:Eu3+ core-shell nanoparticles: synthesis, characterization, biocompatibility and their cytotoxicity. J. Mater. Chem. 21, 1931–19316 (2011). https://doi.org/10.1039/c1jm12871j

    Article  Google Scholar 

  52. A.E. Mesoudy, D. Machon, A. Ruediger, A. Jaouad, F. Alibart, S. Ecoffey, D. Drouin, Band gap narrowing induced by oxygen vacancies in reactively sputtered TiO2thin films. Thin Solid Films 769, 139737 (2023). https://doi.org/10.1016/j.tsf.2023.139737

    Article  ADS  Google Scholar 

  53. P. Xie, Z. Zhang, Z. Wang, K. Sun, R. Fan, Targeted double negative properties in silver/silica random metamaterials by precise control of microstructures. Research 2019, 1–11 (2019)

    Article  Google Scholar 

  54. V. Gupta, K.K. Bamzai, P.N. Kotru, B.M. Wanklyn, Dielectric properties, ac conductivity and thermal behavior of flux grown cadmium titanate crystals. Mater. Sci. Eng. B 130, 163–172 (2006). https://doi.org/10.1016/j.mseb.2006.03.006

    Article  Google Scholar 

  55. U.R. Ghodake, R.C. Kambale, S.S. Suryavanshi, Effect of Mn2+ substitution on structural, electrical transport and dielectric properties of Mg-Zn ferrites. Ceram. Int. 43, 1129–1134 (2017). https://doi.org/10.1016/j.ceramint.2016.10.053

    Article  Google Scholar 

  56. A. Molak, M. Paluch, S. Pawlus, J. Klimontko, Z. Ujma, I. Gruszka, Electric modulus approach to the analysis of electric relaxation in highly conducting (Na0.75Bi0.25)(Mn0.25Nb0.75)O3 ceramics. J. Phys. D Appl. Phys. 38, 1450–1460 (2005). https://doi.org/10.1088/0022-3727/38/9/019

    Article  ADS  Google Scholar 

  57. V. Biju, M.A. Khadar, Dielectric properties of nanostructured nickel oxide. J. Mat. Sci. 38, 4055–4063 (2003). https://doi.org/10.1023/A:1026131103898

    Article  ADS  Google Scholar 

  58. R.B. Belgacem, M. Chaari, A. Matoussi, Studies on structural and electrical properties of ZnO/TiO2 composite materials. J. Alloys Compd. 651, 49–58 (2015). https://doi.org/10.1016/j.jallcom.2015.08.048.s

    Article  Google Scholar 

  59. K. Sultan, R. Samad, F. Nazar, Structural, optical and dielectric properties of Sr doped LaVO4. Adv. Mater. Lett. 12, 21061640 (2021). https://doi.org/10.5185/amlett.2021.061640

    Article  Google Scholar 

  60. P. Thakur, A. Kool, B. Baqchi, S. Das, P. Nandy, Effect of in situ synthesized Fe2O3and Co3O4 nanoparticles on electroactive β phase crystallization and dielectric properties of poly(vinylidene fluoride) thin films. Phys. Chem. Chem. Phys. 17, 1368–1378 (2015)

    Article  PubMed  Google Scholar 

  61. C. Ang, Z. Yu, L.E. Cross, Oxygen-vacancy related low frequency dielectric relaxation and electrical conduction in Bi:SrTiO3. Phys. Rev. B 62, 228–236 (2000). https://doi.org/10.1103/PhysRevB.62.228

    Article  ADS  Google Scholar 

  62. A. Shukla, R.N.P. Choudhary, High-temperature impedance and modulus spectroscopy characterization of La3+/Mn4+ modified PbTiO3 nanoceramics. Phys. B Condens. Matter 406, 2492–2500 (2011). https://doi.org/10.1016/j.physb.2011.03.030

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors express their sincere thanks and gratitude to the Sophisticated Test and Instrumentation Centre (STIC), Cochin University for providing the facilities of powder X-ray diffraction (PXRD) and transmission electron microscopy supplemented with selected area electron diffraction (TEM-SAED). The authors also express their sincere thanks and gratitude to the School of Advanced Sciences (SAS), Vellore Institute of Technology (VIT), Vellore for providing the facilities of Fourier transform infrared (FTIR) and Ultraviolet (UV–Vis) spectrophotometer. The corresponding author also acknowledges the Research & Seed Grant given to the CGMR laboratory by the University of Jammu under the head Quality Assurance Fund (DIQA) and PURSE grants.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed to studying this problem. Material preparation, data collection was performed by MS and TM. Data analysis and its interpretation were given by ST. MS and BP contributed to the X-ray diffraction, Rietveld analysis and its interpretation. The first draft of the manuscript was written by MS. Prof. KKB supervised and conceived the problem. All the authors read and approved this manuscript.

Corresponding author

Correspondence to K. K. Bamzai.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, M., Mustafa, T., Thakur, S. et al. An influence of neodymium (Nd3+) doping on physicochemical properties of monoclinic lanthanum arsenate (LaAsO4) nanomaterials. Appl. Phys. A 130, 180 (2024). https://doi.org/10.1007/s00339-024-07308-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-024-07308-x

Keywords

Navigation