Skip to main content
Log in

Investigation on optical and magnetic properties of BiFeO3–SmFeO3 solid solution

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this communication, the preliminary structural analysis, high-resolution Raman spectra, optical band gap, and magnetization have been studied in polycrystalline sample of (BiFeO3)1-x(SmFeO3)x (BFO–SFO); (with x = 0.0, 0.1, 0.2, and 0.3) ceramics. The X-ray structural analysis confirmed the formation of single phase with rhombohedrally distorted perovskite structure of the materials. The crystallite size of the materials decreases with increasing SmFeO3 contents in BiFeO3. Raman spectroscopy indicates 13 active phonon modes corresponding to (BiFeO3) rhombohedrally distorted R3c structure. The band gap of the studied materials decreases from 2.27 to 2.02 eV which may be due to the restructuring of molecular orbitals. The photocatalytic behavior of the materials is improved as a result of these findings. Substitution with SmFeO3 on BiFeO3 will enhance the ferromagnetic properties of the materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Information will be made accessible on demand.

References

  1. H. Schmid, Multi-ferroic magnetoelectrics. Ferroelectrics. 162, 317 (1994)

    ADS  Google Scholar 

  2. K. Aizu, Phys Rev B. 2, 754–72 (1970)

    ADS  Google Scholar 

  3. H. Schmid, Ferroelectrics. 252, 41–50 (2001)

    ADS  Google Scholar 

  4. J. Massoudi, M. Smari, K. Nouri, E. Dhahri, K. Khirouni, S. Bertaina, L. Bessais, El. K. Hlil, RSC Adv. 10(57), 34556–34580 (2020)

    ADS  PubMed  PubMed Central  Google Scholar 

  5. N. Amri, J. Massoudi, K. Nouri, M. Triki, E. Dhahri, E.L. Bessais, RSC Adv. 11(22), 13256–13268 (2021)

    ADS  PubMed  PubMed Central  Google Scholar 

  6. H.Q. Alijani, S. Iravani, S. Pourseyedi, M. Torkzadeh-Mahani, M. Barani, M. Khatami, Sci. Rep. 11(1), 17431 (2021)

    ADS  PubMed  PubMed Central  Google Scholar 

  7. N. Kouki, S. Hcini, M. Boudard, R. Aldawas, A. Dhahri, RSC Adv. 9(4), 1990 (2019)

    ADS  PubMed  PubMed Central  Google Scholar 

  8. S. Dudziak, Z. Ryzynska, Z. Bielan, J. Ryl, T. Klimczuk, A. Zieli´nska-Jurek, RSC Adv. 10(32), 18784–18796 (2020)

    ADS  PubMed  PubMed Central  Google Scholar 

  9. A.A. Azab, A.M. Mansour, G.M. Turky, Sci. Rep. 10(1), 4955 (2020)

    ADS  PubMed  PubMed Central  Google Scholar 

  10. J. Saini, M. Sharma, B.K. Kuanr, Nanoscale Adv. 3, 6074–6087 (2021)

    ADS  PubMed  PubMed Central  Google Scholar 

  11. I.E. Dzyaloshinskii, Sov Phys JETP. 10, 628–9 (1960)

    MathSciNet  Google Scholar 

  12. W. Eerenstein, N.D. Mathur, J.F. Scott, Nature. 442, 759–65 (2006)

    ADS  PubMed  Google Scholar 

  13. M. Muneeswaran, P. Jegatheesan, M. Gopiraman, I.S. Kim, N.V. Giridharan, Appl. Phys. A Mater. Sci. Process. 114, 853–859 (2014)

    ADS  Google Scholar 

  14. W. Eerenstein, N.D. Mathur, J.F. Scott, Nature 442, 759–765 (2006)

    ADS  PubMed  Google Scholar 

  15. J. Ma, J. Hu, Z. Li, C.-W. Nan, Adv. Mater. 23, 1062–1087 (2011)

    PubMed  Google Scholar 

  16. C.A.F. Vaz, J. Hoffman, C.H. Ahn, R. Ramesh, Adv. Mater. 22, 2900–2918 (2010)

    PubMed  Google Scholar 

  17. C.N.R. Rao, A. Sundaresan, R. Saha, J. Phys. Chem. Lett. 3, 2237–2246 (2012)

    PubMed  Google Scholar 

  18. D. Varshney, P. Sharma, S. Satapathy, P.K. Gupta, J. Alloys Compd. 584, 232–239 (2014)

    Google Scholar 

  19. J. Qi, Y. Zhang, Y. Wang, Y. Liu, M. Wei, J. Zhang, M. Feng, J. Yang, J. Mater. Sci. Mater. Electron. 28, 17490–17498 (2017)

    Google Scholar 

  20. S.R. Basu, L.W. Martin, Y.H. Chu, M. Gajek, R. Ramesh, R.C. Rai, X. Xu, J.L. Musfeldt, Appl. Phys. Lett. 92, 90–93 (2008)

    Google Scholar 

  21. M. Sharmila, S.M. Abdul Kader, D.E. Jain Ruth, M. Veera GajendraBabu, B. Bagyalakshmi, R.T. Ananth Kumar, D. PathinettamPadiyan, B. Sundarakannan, Mater. Sci. Semicond. Process 34, 109–113 (2015)

    Google Scholar 

  22. H.A.A. Khan, S. Ullah, G. Rehman, S. Khan, I. Ahmad, J. Phys. Chem. Solids 148, 109737 (2021)

    Google Scholar 

  23. K.S. Nalwa, A. Garg, J. Appl. Phys. 103, 044101 (2008)

    ADS  Google Scholar 

  24. D. Damjanovic, J. Am. Ceram. Soc. 88, 2663–2676 (2005)

    Google Scholar 

  25. POWDMULT: an interactive powder diffraction data interpretation and indexing program version 2.1, E. Wu, School of Physical Sciences, Flinders University of South Australia, Bradford Park, SA 5042, Australia

  26. B. Bhushan, Z. Wang, J. Tol, N.S. Dalal, A. Basumallick, N.Y. Vasanthacharya, J Am Ceram Soc. 95, 1985 (2012)

    Google Scholar 

  27. P.C. Sati, M. Kumar, S. Chhoker, Ceram Int 41, 3227 (2015)

    Google Scholar 

  28. C. Li-Yun, T. Chi-Shun, C. Pin-Yi, C. Cheng-Sao, V.H. Schmidtd, W. Hsiu-Hsuan, H. Ding-Ji, C. Ting-Shan, Ceram Int. 42, 834–842 (2016)

    Google Scholar 

  29. P. ReddyVanga, R.V. Mangalaraja, M. Ashok, Mater Sci Semicond Process. 40, 796–802 (2015)

    Google Scholar 

  30. H. Fukumuraa, H. Harimaa, K. Kisodab, M. Tamadac, Y. Noguchic, M. Miyayama, J Magn Magn Mater 310, 367–369 (2007)

    ADS  Google Scholar 

  31. S. Guptaa, M. Tomarband, V. Gupta, J Exp Nanosci 8, 261–266 (2013)

    Google Scholar 

  32. A. Ali, H.I. Elsaeedy, S. Ullah, S. Ali Khan et al., J Magn Magn Mater. 563(1), 169942 (2022)

    Google Scholar 

  33. A. Ali, I. Khan, Z. Ali, F. Khan et al., Int J Mod Phys B 33(21), 1950231 (2019)

    ADS  Google Scholar 

  34. M. Saeed, A. Ali, I.U. Haq, S. Muhammad et al., Mater Sci Semicond Process. 139, 106364 (2022)

    Google Scholar 

  35. Imad Khan, Ijaz Ahmad, Akber Ali et al., J Electron Mater 49(5), 3357–3366 (2020)

    ADS  Google Scholar 

  36. Y. Gu, Y. Zhou, W. Zhang, C. Guo et al., AIP Adv. 11, 045223 (2021)

    ADS  Google Scholar 

  37. F. Gao, X.Y. Chen, K.B. Yin, S. Dong, Z.F. Ren, F. Yuan, T. Yu, Z.G. Zou, J.-M. Liu, Adv. Mater. 19, 2889–2892 (2007)

    Google Scholar 

  38. R.V. Pisarev, A.S. Moskvin, A.M. Kalashnikova, T. Rasing, Phys. Rev. B 79, 235128 (2009)

    ADS  Google Scholar 

  39. S. Irfan, L. Li, A.S. Saleemi, C.-W. Nan, J. Mater. Chem. A 5, 11143 (2017)

    Google Scholar 

  40. A. Puhan, B. Bhushan, V. Kumar, H.S. Panda, A. Priyam, D. Das, D. Rout, Mater. Sci. Eng. 241, 48–54 (2019)

    Google Scholar 

  41. V. Srinivas, A.T. Raghavender, K. VijayaKumar, World J Nano Sci Eng. 6, 38–44 (2016)

    Google Scholar 

  42. F. Lin, Y. Qiqi, L. Deng, Z. Zhang, X. He, A. Liu, W. Shi, J Mater Sci 52, 7118–7129 (2017)

    ADS  Google Scholar 

  43. S. Kumara, P. Kumara, R. Waliac, V. Vermaa, Results Phys. 14, 102403 (2019)

    Google Scholar 

  44. R. Pandey, C. Panda, P. Kumar, M. Kar, J Sol-Gel Sci Technol 85, 166–177 (2018)

    Google Scholar 

  45. A.F. Manchon-Gorden, A. Perejon et al., Materials. 16(1), 189 (2023)

    ADS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Dr. Bhagaban Kishan of Utkal University, Bhubaneswar for providing XRD, UV–Visible spectroscopy facilities and NIT Rourkela for providing instrument facility.

Author information

Authors and Affiliations

Authors

Contributions

CR: Data collection, analysis, experiment, interpretation of the results and writing the manuscript. SP: Supervision, reviewing, interpretation of results, resources and editing of the manuscript. DP: Methodology, interpretation of results. The entire creator participated in the analysis to depict the experimental conclusion.

Corresponding author

Correspondence to Samita Pattanayak.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rout, C., Pattanayak, S. & Pattanayak, D. Investigation on optical and magnetic properties of BiFeO3–SmFeO3 solid solution. Appl. Phys. A 130, 165 (2024). https://doi.org/10.1007/s00339-024-07307-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-024-07307-y

Keywords

Navigation