Skip to main content
Log in

Preparation of ZrO2/γ-Al2O3 albumen type catalyst and its catalytic performance for carbonyl sulfide hydrolysis

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In order to realize the efficient removal of COS from blast furnace gas, a ZrO2/γ-Al2O3 albumen type catalyst with low energy consumption and high hydrolysis efficiency using γ-Al2O3 as the carrier and zirconium nitrate as the active component was prepared in this study. The results showed that when the loading of zirconium nitrate was 6% and the calcination temperature was 550 °C, the prepared ZrO2/γ-Al2O3 albumen hydrolysis catalyst had the best hydrolysis catalytic effect on COS. The removal rate of COS could reach up to 96.95%, and the overflow rate of H2S was maintained at 72.0% after 80 min of reaction. Compared with the single carrier γ-Al2O3, the loading of active component ZrO2 can avoid the adsorption of H2S on the catalyst to block the pore structure of the catalyst, and it can improve the hydrolysis conversion of COS and the overflow rate of H2S, so that the catalyst maintains high catalytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. W. Uribe-Soto, J.F. Portha, J.M. Commenge, L. Falk, Sust. Energ. Rev. 74, 809–823 (2017). https://doi.org/10.1016/j.rser.2017.03.00

    Article  Google Scholar 

  2. J.Y. Yu, R.S. Xu, J.L. Zhang, A.Y. Zheng, J. Clean. Prod. 414, 137659 (2023). https://doi.org/10.1016/j.jclepro.2023.137659

    Article  Google Scholar 

  3. Y. Wang, X.Q. Wu, D. Wei, Y. Chen, J. Yang, L.Y. Wu, Rsc. Adv. 13, 12618–12633 (2023). https://doi.org/10.1039/d2ra07409e

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  4. L. Zhang, C.J. Liu, Y. Jia, Y.D. Mu, Y. Yan, P.C. Huang, Polymers 16, 161 (2024). https://doi.org/10.3390/polym16010161

    Article  PubMed  PubMed Central  Google Scholar 

  5. M.M. Kadhim, A.M. Rheima, Z.S. Sabri, B. Al-Qargholi, A.S. Jaber, F.M.D. Al-Jaafari, W. Al-Azzawi, S.K. Hachim, D.T. Zaidan, T.Z. Taban, Inorg. Chem. Commun. 152, 110689 (2023). https://doi.org/10.1016/j.inoche.2023.110689

    Article  Google Scholar 

  6. X. Song, X. Chen, L.N. Sun, K. Li, X. Sun, C. Wang, P. Ning, Chem. Eng. J. 399, 125764 (2020). https://doi.org/10.1016/j.cej.2020.125764

    Article  Google Scholar 

  7. Z.P. Gu, W.X. Bai, J.X. Chen, J. Yu, F. Liu, J. Environ. Chem. Eng. 11, 109886 (2023). https://doi.org/10.1016/j.jece.2023.109886

    Article  Google Scholar 

  8. V. Nagarajan, R. Chandiramouli, Chem. Phys. 558, 111504 (2022). https://doi.org/10.1016/j.chemphys.2022.111504

    Article  Google Scholar 

  9. P.F. Li, G.C. Wang, Y. Dong, Y.Q. Zhuo, Y.M. Fan, Curr. Pollut. Rep. 8, 189–200 (2022). https://doi.org/10.1007/s40726-022-00212-z

    Article  Google Scholar 

  10. A.T. Zoghi, M. Shokouhi, F. Naderi, M. Abbasghorbani, A. Fatehi, B. Pouladi, M.A. Adhami, J. Solution Chem. 51, 84–96 (2022). https://doi.org/10.1007/s10953-021-01131-1

    Article  Google Scholar 

  11. G.G. Gu, T.J. Yue, Z.Q. Wan, R. Zhang, X.B. Lu, W.M. Ren, Polymers 9, 515 (2017). https://doi.org/10.3390/polym9100515

    Article  PubMed  PubMed Central  Google Scholar 

  12. H.H. Yi, S.Z. Zhao, X.L. Tang, P. Ning, H.Y. Wang, D. He, Catal. Commun. 12, 1492–1495 (2011). https://doi.org/10.1016/j.catcom.2011.05.034

    Article  Google Scholar 

  13. R. Cao, P. Ning, X.Q. Wang, L.L. Wang, Y.X. Ma, Y.B. Xie, H. Zhang, J.X. Qu, Fuel 310, 122295 (2022). https://doi.org/10.1016/j.fuel.2021.122295

    Article  Google Scholar 

  14. J.W. Xue, R.Z. Liao, J.J. Li, Y.C. Cao, Y.Q. Zhang, J. Chin. Chem. Soc. 70, 528–538 (2022). https://doi.org/10.1002/jccs.202200337

    Article  Google Scholar 

  15. N. Abdoulmoumine, S. Adhikari, A. Kulkarni, S. Chattanathan, Appl. Energy 155, 294–307 (2015). https://doi.org/10.1016/j.apenergy.2015.05.095

    Article  ADS  Google Scholar 

  16. X.W. Mu, L.X. She, Z.K. Wu, L.D. Deng, J. Kong, T.L. Wang, Y.H. Qin, Y. Zheng, Chem. Eng. Res. Des. 194, 801–809 (2023). https://doi.org/10.1016/j.cherd.2023.05.018

    Article  Google Scholar 

  17. J.N. Gu, J.X. Liang, S.J. Hu, Y.X. Xue, X. Min, M.M. Guo, X.F. Hu, J.P. Jia, T.H. Sun, Sep. Purif. Technol. 295, 121356 (2022). https://doi.org/10.1016/j.seppur.2022.121356

    Article  Google Scholar 

  18. S.Z. Zhao, H.H. Yi, X.L. Tang, D.J. Kang, F.Y. Gao, J.G. Wang, Y.H. Huang, Z.Y. Yang, Catal. Today 327, 161–167 (2019). https://doi.org/10.1016/j.cattod.2018.05.011

    Article  Google Scholar 

  19. R.G. Zhang, L.X. Ling, B.J. Wang, J. Mol. Model. 18, 1255–1262 (2012). https://doi.org/10.1007/s00894-011-1155-8

    Article  PubMed  Google Scholar 

  20. Y.J. Wang, S.Y. Chen, H. Chen, X.Z. Yuan, Y.C. Zhang, J. Energy Chem. 22, 902–906 (2013). https://doi.org/10.1016/S2095-4956(14)60270-9

    Article  Google Scholar 

  21. Z. Wei, X. Zhang, F.L. Zhang, Q. Xie, S.Z. Zhao, Z.P. Hao, J. Hazard. Mater. 407, 124546 (2021). https://doi.org/10.1016/j.jhazmat.2020.124546

    Article  PubMed  Google Scholar 

  22. J.X. Mi, X.P. Chen, Q.Y. Zhang, Y. Zheng, Y.H. Xiao, F.J. Liu, C.T. Au, L.L. Jiang, Chem. Commun. 55, 9375–9378 (2019). https://doi.org/10.1039/c9cc03637g

    Article  Google Scholar 

  23. L. Zhang, R.K. Song, Y. Jia, Z.R. Zou, Y. Chen, Q. Wang, Materials. 17, 143 (2024). https://doi.org/10.3390/ma17010143

    Article  ADS  Google Scholar 

  24. D. Zhao, S.Q. Xia, Y.G. Wang, M.D. Wang, Appl. Phys. A-Mater. (2020). https://doi.org/10.1007/s00339-019-3236-y

    Article  Google Scholar 

  25. G. Balakrishnan, D. Sastikumar, P. Kuppusami, R.V. Babu, J. Il Song, Appl. Phys. A-Mater. 124, 158 (2018). https://doi.org/10.1007/s00339-018-1576-7

    Article  ADS  Google Scholar 

  26. W.W. Sun, X.L. Wang, X.W. Sun, Y. Yang, C. Zhang, Y.W. Wang, Y.H. Cui, Y.D. Ma, Appl. Phys. A-Mater. 126, 639 (2020). https://doi.org/10.1007/s00339-020-03819-5

    Article  ADS  Google Scholar 

  27. P. Wu, S.P. Ding, K. Shen, H.Q. Yang, S. Wang, S.L. Zhang, Y.P. Zhang, Fuel 337, 127163 (2023). https://doi.org/10.1016/j.fuel.2022.127163

    Article  Google Scholar 

  28. G. de Falco, F. Montagnaro, M. Balsamo, A. Erto, F.A. Deorsola, L. Lisi, S. Cimino, Micropor. Mesopor. Mat. 257, 135–146 (2018). https://doi.org/10.1016/j.micromeso.2017.08.025

    Article  Google Scholar 

  29. X. Sun, P. Ning, X.L. Tang, H.H. Yi, K. Li, D. He, X.M. Xu, B. Huang, R.Y. Lai, J. Energy Chem. 23, 221–226 (2014). https://doi.org/10.1016/S2095-4956(14)60139-X

    Article  ADS  Google Scholar 

  30. G.C. Lei, D. Li, Y.J. Ma, S.P. Wang, L.J. Shen, Y.Y. Zhan, L.L. Jiang, Carbon 210, 118039 (2023). https://doi.org/10.1016/j.carbon.2023.118039

    Article  Google Scholar 

  31. K. Nimthuphariyha, A. Usmani, N. Grisdanurak, E. Kanchanatip, M. Yan, S. Suthirakun, S. Tulaphol, Chem. Eng. Commun. 208, 539–548 (2019). https://doi.org/10.1080/00986445.2019.1705794

    Article  Google Scholar 

  32. Y.H. Yue, X.P. Zhao, W.M. Hua, Z. Gao, Appl. Catal. B-Environ. 46, 561–572 (2003). https://doi.org/10.1016/S0926-3373(03)00319-9

    Article  Google Scholar 

  33. X. Li, X.Q. Wang, L. Yuan, L.L. Wang, Y.X. Ma, Y. Wu, Y.B. Xie, R. Cao, Y.R. Xiong, P. Ning, Chem. Eng. J. 471, 144573 (2023). https://doi.org/10.1016/j.cej.2023.144573

    Article  Google Scholar 

  34. C.V. Nova, K.A. Reis, A.L. Pinheiro, C.J. Dalmaschio, A.J. Chiquito, M.D. Teodoro, A.D. Rodrigues, E. Longo, F.M. Pontes, J. Sol-gel, Sci. Techn. 98, 113–126 (2021). https://doi.org/10.1007/s10971-021-05488-z

    Article  Google Scholar 

  35. M. Petchmark, V. Ruangpornvisuti, Mater. Lett. 301, 130243 (2021). https://doi.org/10.1016/j.matlet.2021.130243

    Article  Google Scholar 

  36. T.T. Kong, Y. Jia, L. Zhang, H. Shu, L. Zhang, X. Chang, W. Kuang, M. Luo, J. Mater. Sci. 55, 3833–3844 (2019). https://doi.org/10.1007/s10853-019-04216-x

    Article  ADS  Google Scholar 

  37. B.P. Williams, N.C. Young, J. West, C. Rhodes, G.J. Hutchings, Catal. Today 49(1), 99–104 (1999). https://doi.org/10.1016/S0920-5861(98)00413-1

    Article  Google Scholar 

  38. J.F. Liu, Y.C. Liu, L. Xue, Y.B. Yu, H. He, Acta. Phys-chim. Sin. 23, 997–1002 (2007). https://doi.org/10.1016/S1872-1508(07)60054-0

    Article  Google Scholar 

  39. K. Yang, J.J. Chen, J.X. Mi, R.Q. Yin, J. Yuan, J.Q. Shi, G.M. Wang, J.H. Li, Fuel 333, 126503 (2023). https://doi.org/10.1016/j.fuel.2022

    Article  Google Scholar 

  40. P. Wachter, C. Gaber, J. Raic, M. Demuth, C. Hochenauer, Int. J. Hydrogen Energy 46(5), 437–3452 (2020). https://doi.org/10.1016/j.ijhydene.2020.10.214

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by Technology Innovation Leading Program of Shaanxi [No. 2022QFY06-04]; Key Research and development Plan of Ningxia Hui Autonomous Region [No. 2023BEG02058]; Natural Science Basic Research Program of Shaanxi [No. 2019JL-01]. “Two-chain” fusion key program of Shaanxi Province [No. 2023-LL-QY-05].

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, LZ (F) and LZ (M); Methodology, RS; Software, QW; Validation, CL; Investigation, LZ (F); Data Curation, YM; Writing-Original Draft Preparation, YC; Writing-Review & Editing, YC.

Corresponding author

Correspondence to Lei Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Chen, Y., Zhang, L. et al. Preparation of ZrO2/γ-Al2O3 albumen type catalyst and its catalytic performance for carbonyl sulfide hydrolysis. Appl. Phys. A 130, 170 (2024). https://doi.org/10.1007/s00339-024-07303-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-024-07303-2

Keywords

Navigation