Skip to main content
Log in

Influence of in-situ substrate temperature on anisotropic behaviour of glancing angle grown nickel nanocolumns

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this work, we report magnetic and optical anisotropies in tilted nickel (Ni) nanocolumns and their dependencies on the film growth conditions. The Ni nanocolumns were prepared using electron beam evaporation technique in conjunction with glancing angle deposition methodology. The film depositions were performed at various in-situ substrate temperatures viz. 30 °C, 150 °C, 250 °C and 300 °C. An increase in material density with in-situ substrate temperature due to the thermal diffusion mediated coalescence of neighbouring grains was observed. The results were further corroborated with the alterations in surface morphology of the films. The modification in tilt angle of the Ni nanocolumns was also observed with in-situ substrate heating due to the non-ballistic growth approach. The presence of uniaxial optical anisotropy was established in the films deposited at low substrate temperatures (< 250 °C) using generalized ellipsometry (GE). However, the uniaxial optical anisotropy was found to be negligible for the high temperature deposited films due to thermal diffusion effect. SQUID measurements were performed for quantification of magnetic anisotropy in the films. The estimated magnetic anisotropy energy confirmed low substrate temperature deposited films to be more anisotropic as compared to others. Magnetic coercivity of the films showed film porosity dependent changes in the field values. Overall, the present investigation demonstrates anisotropic behaviour of nanocolumnar nickel thin films for non-ballistic glancing angle deposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. A. Barranco, A. Borras, A.R. Gonzalez-Elipe, A. Palmero, Prog. Mater. Sci. 76, 59–153 (2016)

    Article  CAS  Google Scholar 

  2. K. Robbie, L.J. Friedrich, S.K. Dew, T. Smy, M.J. Brett, J. Vac. Sci. Technol. Vac. Surfaces Films 13, 1032 (1995)

    Article  ADS  CAS  Google Scholar 

  3. M.M. Hawkeye, M.T. Taschuk, M.J. Brett, (Wiley, New York, 2014)

  4. C. Gruner, S. Liedtke, J. Bauer, S.G. Mayr, B. Rauschenbach, A.C.S. Appl, Nano Mater. 1(3), 1370–1376 (2018)

    Google Scholar 

  5. M. Suzuki, J. NanophotonicsNanophotonics 7(1), 073598 (2013)

    Article  ADS  Google Scholar 

  6. J. Steele, M. Brett, J. Mater. Sci. Mater. Electron. 18, 367 (2007)

    Article  CAS  Google Scholar 

  7. M. Schubert, J. Xi, J. Kim et al., Appl. Phys. Lett. 90, 141115 (2007)

    Article  ADS  Google Scholar 

  8. D.X. Ye, T. Karabacak, B.K. Lim, G.C. Wang, T.M. Lu, Nanotechnology 15, 817 (2004)

    Article  ADS  CAS  Google Scholar 

  9. B. Dick, M.J. Brett, T. Smy, J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. 21, 23 (2003)

    ADS  CAS  Google Scholar 

  10. M.J. Colgan, B. Djurfors, D.G. Ivey, M.J. Brett, Thin Solid Films 466, 92–96 (2004)

    Article  ADS  CAS  Google Scholar 

  11. G. Beydaghyan, K. Kaminska, T. Brown, K. Robbie, Appl. Opt. 43(28), 5343–5349 (2004)

    Article  ADS  PubMed  CAS  Google Scholar 

  12. L. Holland, J. Opt. Soc. Am. 43, 376 (1953)

    Article  ADS  Google Scholar 

  13. I. Hodgkinson, F. Horowitz, H.A. Macleod et al., J. Opt. Soc. Am. A 2, 1693 (1985)

    Article  ADS  CAS  Google Scholar 

  14. K. Kaminska, T. Brown, G. Beydaghyan et al., Appl. Opt. 42, 4212 (2003)

    Article  ADS  PubMed  CAS  Google Scholar 

  15. J. Potocnik, M. Popovic, B. Jokic, Z. Rakocevic, Mater. Res. Bull. 119, 110540 (2019)

    Article  CAS  Google Scholar 

  16. F. Liu, C. Yu, L. Shen, J. Barnard, G.J. Mankey, IEEE Trans. Magn. 36, 2939–2941 (2000)

    Article  ADS  CAS  Google Scholar 

  17. J. Potocnik, M. Popovic, M. Mitric, Z. Rakocevi, Opt. Mater. 111, 110649 (2021)

    Article  CAS  Google Scholar 

  18. H. Kwon, C.J. Choi, J. Cho, J. Korean Phys. Soc. 68, 839–841 (2016)

    Article  ADS  CAS  Google Scholar 

  19. H. Savaloni, S. Bagheri-Najmi, Vacuum 66, 49 (2002)

    Article  ADS  CAS  Google Scholar 

  20. F. Maghazeii, H. Savaloni, M.G. Shahraki, Opt. Commun.Commun. 281, 4687–4695 (2008)

    Article  ADS  CAS  Google Scholar 

  21. R. De, S.M. Haque, M.K. Sikdar, P.K. Sahoo, T. Som, K.D. Rao, J. Phys. Condens. MatterCondens. Matter 32, 395701 (2020)

    Article  CAS  Google Scholar 

  22. R. Mareus, C. Mastail, F. Nita, A. Michel, G. Abadias, Comput. Mater. Sci. 197, 110662 (2021)

    Article  CAS  Google Scholar 

  23. H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (Wiley, 2003)

  24. M. Ranjan, M. Bhatnagar, S. Mukherjee, J. Appl. Phys. 117, 103106 (2015)

    Article  ADS  Google Scholar 

  25. M. Schubert, Phys. Rev. B 53, 4265 (1996)

    Article  ADS  CAS  Google Scholar 

  26. M. Bhatnagar, M. Ranjan, S. Mukherjee, J. Nanopart. Res. 17, 100 (2015)

    Article  ADS  Google Scholar 

  27. M. Saini, S. Augustine, M. Ranjan, T. Som, Appl. Surf. Sci. 512, 145703 (2020)

    Article  CAS  Google Scholar 

  28. M.S.S. Brooks, M. Richter, L.M. Sandratskii, Encyclopedia of Materials: Science and Technology, 2nd ed, pp. 2059–2070 (2001)

  29. J. Jorritsma, J.A. Mydosh, J. Appl. Phys. 84(2), 901–906 (1998)

    Article  ADS  CAS  Google Scholar 

  30. U. Parlak, M.E. Aköz, S. Tokdemir Öztürk, M. Erkovan, Acta Phys. Polon. 127, 995–997 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge Dr. D. V. Udupa (Head, Atomic & Molecular Physics Division, BARC- Mumbai) and Dr. S. Pradhan (Head, Photonics & Quantum Optics Section, A&MPD, BARCF- Visakhapatnam) for encouragement and support. The authors also wish to thank Dr. A.K. Debnath, BARC Mumbai for technical discussions and Sri Jitendra S. Misal, BARCF- Visakhapatnam for help in film preparation.

Funding

Funding information is not applicable/no funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

RD and KDR contributed to the study conception and design. Material preparation, data collection and analysis were performed by RD, SA, BD, MKS, MR, PKS, SMH and CP. The first draft of the manuscript was written by RD and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Rajnarayan De.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De, R., Augustine, S., Das, B. et al. Influence of in-situ substrate temperature on anisotropic behaviour of glancing angle grown nickel nanocolumns. Appl. Phys. A 130, 126 (2024). https://doi.org/10.1007/s00339-024-07300-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-024-07300-5

Keywords

Navigation