Skip to main content
Log in

Superhydrophobic silica nanoparticles produced from rice husks, wettability at the macro- and nanoscale

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The production of hydrophobic surfaces has gained significant industrial interest for various applications. Recent studies have demonstrated the use of different nanoparticles to synthesize superhydrophobic materials with excellent results. In this study, silica nanoparticles obtained from biomass (rice husks) were used as raw materials to make the surface hydrophobic using two methods: a wet impregnation process and dissolving the silica and condensation reaction to form the nanoparticle in the presence of stearic acid to functionalize the surface. The nanoparticles were characterized by AFM, FTIR, and dynamic light scattering to determine their size and composition. Hydrophobicity and wettability were measured macroscopically by contact angle in a flat surface and nanoscopically by atomic force microscopy. The macroscopic surface free Gibbs energy of the film was determined and compared with the adhesion energy of the individual nanoparticles determined by atomic force spectroscopy. Comparative analysis of macroscopic and nanoscopic measurements enhances our understanding of hydrophobic behavior at different size scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article.

References

  1. Y. Wang, A. Akbarzadeh, L. Chong, J. Du, N. Tahir, M.K. Awasthi, Chemosphere 297, 134181 (2022)

    Article  PubMed  CAS  Google Scholar 

  2. J. Castillo, M. Arcuri, V. Vargas, V. Piscitelli, Appl. Phys. A 128, 107 (2022)

    Article  ADS  CAS  Google Scholar 

  3. S. Bellucci, G. Gaggiotti, M. Marchetti, F. Micciulla, R. Mucciato, M. Regi, J. Phys. Conf. Ser. 61, 99 (2007)

    Article  ADS  CAS  Google Scholar 

  4. M. Asiri, N. Srivastava, R. Singh, A. Al Ali, S.C. Tripathi, A. Alqahtani, M. Saeed, M. Srivastava, A.K. Rai, V.K. Gupta, Sci. Total. Environ. 876, 162765 (2023)

    Article  ADS  PubMed  CAS  Google Scholar 

  5. A. Bera, H. Belhaj, J. Nat. Gas Sci. Eng. 34, 1284 (2016)

    Article  CAS  Google Scholar 

  6. T.R. Shojaei, M.A.M. Salleh, M. Tabatabaei, H. Mobli, M. Aghbashlo, S.A. Rashid, T. Tan, Synthesis, Technology and Applications of Carbon Nanomaterials (Elsevier, 2019), pp.247–277

    Book  Google Scholar 

  7. Z. Çiplak, N. Yildiz, A. Çalimli, Fuller. Nanotub. Carbon Nanostruct. 23, 361 (2015)

    Article  ADS  Google Scholar 

  8. A.I.S. Ahmed, Y.S. Lee, Korean J. Mycol. 43, 207 (2015)

    Google Scholar 

  9. M. Agista, K. Guo, Z. Yu, Appl. Sci. 8, 871 (2018)

    Article  Google Scholar 

  10. M. Baalousha, J.R. Lead, Colloids Surf. A 419, 238 (2013)

    Article  CAS  Google Scholar 

  11. J. Athinarayanan, V.S. Periasamy, M. Alhazmi, K.A. Alatiah, A.A. Alshatwi, Ceram. Int. 41, 275 (2015)

    Article  CAS  Google Scholar 

  12. C. A. Arcos, D. M. Pinto, J. Enrique, R. Páez, Revista Facultad de Ingeniería Universidad de Antioquia, 41, 15 (2007)

  13. R.A. Bakar, R. Yahya, S.N. Gan, Procedia Chem. 19, 189 (2016)

    Article  Google Scholar 

  14. J. Chun, J.H. Lee, Sustainability 12, 10683 (2020)

    Article  CAS  Google Scholar 

  15. P. Gómez-Vera, H. Blanco-Flores, A.M. Francisco, J. Castillo, W. Tezara, Exp. Agric. 57, 85 (2021)

    Article  Google Scholar 

  16. W.A. Daoud, J.H. Xin, X. Tao, J. Am. Ceram. Soc. 87, 1782 (2004)

    Article  CAS  Google Scholar 

  17. M. Awais, M. Jalil, U. Zulfiqar, S.W. Husain, IOP Conf. Ser. Mater. Sci. Eng. 146, 012022 (2016)

    Article  Google Scholar 

  18. G.Y. Bae, B.G. Min, Y.G. Jeong, S.C. Lee, J.H. Jang, G.H. Koo, J. Colloid Interface Sci. 337, 170 (2009)

    Article  ADS  PubMed  CAS  Google Scholar 

  19. C. Cao, J. Cheng, Surf. Coat. Technol. 349, 296 (2018)

    Article  CAS  Google Scholar 

  20. P. Chen, Y. Hu, C. Wei, Appl. Surf. Sci. 258, 4334 (2012)

    Article  ADS  CAS  Google Scholar 

  21. L. Feng, Z. Zhang, Z. Mai, Y. Ma, B. Liu, L. Jiang, D. Zhu, Angew. Chem. 116, 2046 (2004)

    Article  ADS  Google Scholar 

  22. J. Li, Z. Zhao, Y. Zhang, B. Xiang, X. Tang, H. She, J. Sol–Gel Sci. Technol. 80, 208 (2016)

    Article  CAS  Google Scholar 

  23. X.L. Sun, Z.P. Fan, L.D. Zhang, L. Wang, Z.J. Wei, X.Q. Wang, W.L. Liu, Appl. Surf. Sci. 257, 2308 (2011)

    Article  ADS  CAS  Google Scholar 

  24. S. Ebnesajjad, Handbook of Adhesives and Surface Preparation (Elsevier, 2011), pp.21–30

    Book  Google Scholar 

  25. A.D. Tiwari, A.K. Mishra, S.B. Mishra, A.T. Kuvarega, B.B. Mamba, Carbohyd. Polym. 92, 1402 (2013)

    Article  CAS  Google Scholar 

  26. D.J. Brayshaw, M. Berry, T.J. McMaster, Ultramicroscopy 97, 289 (2003)

    Article  PubMed  CAS  Google Scholar 

  27. S. Assemi, J. Nalaskowski, W.P. Johnson, Colloids Surf. A 286, 70 (2006)

    Article  CAS  Google Scholar 

  28. F.L. Leite, C.C. Bueno, A.L. Da Róz, E.C. Ziemath, O.N. Oliveira, IJMS 13, 12773 (2012)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Y.-Y. Lin, C.-F. Chang, W.-T. Lee, Int. J. Solids Struct. 45(7–8), 2220–2232 (2008)

    Article  Google Scholar 

  30. S. Fan, H. Gao, W. Dong, J. Tang, J. Wang, M. Yang, G. Wang, Eur. J. Inorg. Chem. 2017, 2138 (2017)

    Article  CAS  Google Scholar 

  31. H. Yuan, H. Bai, Y. Wang, Energy Technology 2016: Carbon Dioxide Management and Other Technologies, TMS (The Minerals, Metals & Materials Society), 2016

  32. J. Nordström, E. Nilsson, P. Jarvol, M. Nayeri, A. Palmqvist, J. Bergenholtz, A. Matic, J. Colloid Interface Sci. 356, 37 (2011)

    Article  ADS  PubMed  Google Scholar 

  33. S.A. Ajeel, K.A. Sukkar, N.K. Zedin, IOP Conf. Mater. Sci. Eng. 881, 012096 (2020)

    Article  CAS  Google Scholar 

  34. J.J. Adams, J.F. Schabron, J.F. Rovani, F.G.A. Van Den Berg, C. Mesters, Energy Fuels 30, 570 (2016)

    Article  CAS  Google Scholar 

  35. D. Traini, P.M. Young, P. Rogueda, R. Price, Aerosol Sci. Technol. 40, 227 (2006)

    Article  ADS  CAS  Google Scholar 

Download references

Funding

Ministerio de Ciencia y Tecnología.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, analysis review and supervision: JC. Methodology, data collection: GLG-A.

Corresponding author

Correspondence to Jimmy Castillo.

Ethics declarations

Conflict of interest

The authors declare that they have no financial interests. The authors have no financial or proprietary interests in any material discussed in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castillo, J., Galarza-Acosta, G.L. Superhydrophobic silica nanoparticles produced from rice husks, wettability at the macro- and nanoscale. Appl. Phys. A 130, 102 (2024). https://doi.org/10.1007/s00339-023-07270-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-07270-0

Keywords

Navigation