Skip to main content
Log in

Orange red Ca9Sc(PO4)7: Sm3+ phosphor with excellent thermal stability for solid state lighting

  • Rapid Communications
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this study, a series of Ca9Sc(PO4)7: Sm3+ (CSP: Sm3+) orange-red phosphors were synthesized by the conventional solid-phase method, and their crystal structure, luminescent properties, decay lifetimes and thermal stability were investigated. The computational result shows that the CSP substrate has a wide band gap value (4.258 eV). At 403 nm excitation, the emission spectrum of CSP: Sm3+ phosphors has an intense orange red emission at 602 nm. The optimum concentration of Sm3+ ion doped phosphor is 0.12, and the phosphor has a high color purity (97%). Moreover, the prepared phosphors have excellent thermal stability, and the emission intensity can still reach 91.68% of that at room temperature at 423 K. The above results indicate that the prepared CSP: Sm3+ phosphors have excellent luminescent properties and have potential applications in solid-state lighting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Availability of data and materials

All data, models, and code generated or used during the study appear in the submitted article.

References

  1. B.C. Jamalaiah, I.G. Kim, Greenish-yellow emitting CdS: Sm3+ nanoparticles: structural and optical analysis. Ceram. Int. 47, 10950–10957 (2021). https://doi.org/10.1016/j.ceramint.2020.12.214

    Article  CAS  Google Scholar 

  2. G. Li, W. Chen, Y. Wang, B. Duhan, Electronic structure, photoluminescence and phosphorescence properties in Sr2ScGaO5:Sm3+. Dyes Pigments 157, 259–266 (2018). https://doi.org/10.1016/j.dyepig.2018.04.063

    Article  CAS  Google Scholar 

  3. G. Liu, Z. Xia, Modulation of thermally stable photoluminescence in Cr3+-based near-infrared phosphors. J. Phys. Chem. Lett. 13(22), 5001–5008 (2022). https://doi.org/10.1021/acs.jpclett.2c01143

    Article  PubMed  CAS  Google Scholar 

  4. Z. Yang, G. Liu, Y. Zhao et al., Competitive site occupation toward improved quantum efficiency of SrLaScO4: Eu red phosphors for warm white LEDs. Adv. Opt. Mater. 10, 2102373 (2022). https://doi.org/10.1002/adom.202102373

    Article  CAS  Google Scholar 

  5. G.H. Li, N. Yang, J. Zhang et al., The non-concentration-quenching phosphor Ca3Eu2B4O12 for WLED application. Inorg. Chem. 59, 3894–3904 (2020). https://doi.org/10.1021/acs.inorgchem.9b03565

    Article  PubMed  CAS  Google Scholar 

  6. G. Ouertani, M. Ferhi, K. Horchani-Naifer et al., l. Effect of Sm3+ concentration and excitation wavelength on spectroscopic properties of GdPO4: Sm3+ phosphor. J. Alloy. Compd. 885, 161178 (2021). https://doi.org/10.1016/j.jallcom.2021.161178

    Article  CAS  Google Scholar 

  7. T. Rimpongpisarn, W. Wattanathana, K. Sukthavorn et al., Novel luminescent PLA/MgAl2O4: Sm3+ composite filaments for 3D printing application. Mater. Lett. 237, 270–273 (2019). https://doi.org/10.1016/j.matlet.2018.11.066

    Article  CAS  Google Scholar 

  8. E.F. Huerta, O. Soriano-Romero, A.N. Meza-Rocha et al., Lithium-aluminum-zinc phosphate glasses activated with Sm3+, Sm3+/Eu3+ and Sm3+/Tb3+ for reddish-orange and white light generation. J. Alloy. Compd. 846, 156332 (2020). https://doi.org/10.1016/j.jallcom.2020.156332

    Article  CAS  Google Scholar 

  9. Y. Duan, X. Li, R. Shen et al., Luminescence and optical properties of sodium germanate glasses doped with Sm3+ ions. Mater. Res. Bull. 153, 111905 (2022). https://doi.org/10.1016/j.materresbull.2022.111905

    Article  CAS  Google Scholar 

  10. W.U. Khan, L. Zhou, Q. Liang et al., Luminescence enhancement and energy transfers of Ce 3+ and Sm 3+ in CaSrSiO4 phosphor. J. Mater. Chem. C. 6(28), 7612–7618 (2018). https://doi.org/10.1039/C8TC02143K

    Article  Google Scholar 

  11. C. Ma, X. Wang, Z. Gan et al., Photoluminescence and optical temperature sensing in Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free ceramics. Ceram. Int. 45(1), 588–594 (2019). https://doi.org/10.1016/j.ceramint.2018.09.212

    Article  CAS  Google Scholar 

  12. P.K. Pandey, V. Chauhan, P. Dixit et al., Role of Na+ co-doping in luminescence enhancement of Bi2O3: Sm3+ nanophosphors. Mater. Sci. Semicond. Process. 150, 106915 (2022). https://doi.org/10.1016/j.mssp.2022.106915

    Article  CAS  Google Scholar 

  13. X. Tian, H. Dou, L. Wu, Non-contact thermometry with dual-activator luminescence of Bi3+/Sm3+: YNbO4 phosphor. Ceram. Int. 46(8), 10641–10646 (2020). https://doi.org/10.1016/j.ceramint.2020.01.068

    Article  CAS  Google Scholar 

  14. Z. Ge, C. Zhipeng, S.H.I. Yurong et al., Synthesis and photoluminescence properties of a red emitting phosphor NaSr2(NbO3)5: RE3+(RE=Sm, Pr) for white LEDs. J. Rare Earths 31(11), 1049–1052 (2013). https://doi.org/10.1016/S1002-0721(12)60401-3

    Article  CAS  Google Scholar 

  15. R.M. Yerojwar, N.S. Kokode, C.M. Nandanwar, Synthesis and Photoluminescence characterization of ZnAl12O19: Sm3+ Phosphor for W-LED. Int J Sci Technol Res (IJSRST) 3(9), 811 (2022). https://doi.org/10.32628/IJSRST2293159

    Article  Google Scholar 

  16. T. Wang, W. Bian, D. Zhou et al., Red long lasting phosphorescence in Ca2Ge7O16: Sm3+ via persistent energy transfer from the host to Sm3+. Mater. Res. Bull. 74, 151–155 (2016). https://doi.org/10.1016/j.materresbull.2015.10.028

    Article  CAS  Google Scholar 

  17. L. Zhang, Q. Meng, W. Sun et al., Temperature-sensing characteristics of NaGd(MoO4)2: Sm3+, Tb3+ phosphors. Ceram. Int. 47(1), 670–676 (2021). https://doi.org/10.1016/j.ceramint.2020.08.175

    Article  CAS  Google Scholar 

  18. J. Zhuang, W. Feng, B. Zhou et al., Photoluminescence properties of Eu3+ doped CaSr(WO4)2 phosphor by Li+ charge compensation. Z Naturforsch A. 7, 77 (2022). https://doi.org/10.1515/zna-2022-0022

    Article  CAS  Google Scholar 

  19. K.N. Narasimhamurthy, G.P. Darshan, S.C. Sharma et al., Surface functionalized inorganic phosphor by grafting organic antenna for long term preservation of latent fingerprints and data-security applications. J. Colloid Interface Sci. 600, 887–897 (2021). https://doi.org/10.1016/j.jcis.2021.05.029

    Article  ADS  PubMed  CAS  Google Scholar 

  20. R. Yu, H.M. Noh, B.K. Moon et al., Photoluminescence characteristics of Sm3+ doped Ba3La(PO4)3 as new orange-red emitting phosphors. J. Lumin. 145, 717–722 (2014). https://doi.org/10.1016/j.jlumin.2013.08.049

    Article  CAS  Google Scholar 

  21. G. Rajkumar, V. Ponnusamy, G.V. Kanmani et al., Ternary type BaY2ZnO5: Eu3+ deep-red phosphor for possible latent fingerprint, security ink and WLED applications. Ceram. Int. 48(1), 10–21 (2022). https://doi.org/10.1016/j.ceramint.2021.07.185

    Article  CAS  Google Scholar 

  22. Y. Wu, X. Zhao, Z. Zhang et al., Dual-mode dichromatic SrBi4Ti4O15: Er3+ emitting phosphor for anti-counterfeiting application. Ceram. Int. 11(47), 15067–15072 (2021). https://doi.org/10.1016/j.ceramint.2021.02.064

    Article  CAS  Google Scholar 

  23. N. Latha, B.D. Prasad, D.R. Lavanya et al., Photochromic, down-conversion nano bismuth chloride layered material: Latent fingerprint visualization and data security applications. J. Lumin. 252, 119328 (2022). https://doi.org/10.1016/j.jlumin.2022.119328

    Article  CAS  Google Scholar 

  24. Y. Li, J. Kong, C. Li et al., A wide-band excited red phosphor GdNb2VO9: Eu3+ with abnormal thermal quenching for latent fingerprints, security ink, and WLEDs. J. Alloy. Compd. 940, 168716 (2023). https://doi.org/10.1016/j.jallcom.2023.168716

    Article  CAS  Google Scholar 

  25. W. Shi, J. Chen, J. Kong et al., A novel highly thermal-stable red-emitting CaGdSbWO8: Eu3+ phosphor with scheelite structure for high CRI w-LEDs, security ink, and latent fingerprint. J. Alloy. Compd. 914, 165134 (2022). https://doi.org/10.1016/j.jallcom.2022.165134

    Article  CAS  Google Scholar 

  26. G. Rajkumar, V. Ponnusamy, G.V. Kanmani et al., A highly intense double perovskite BaSrYZrO5.5: Eu3+ phosphor for latent fingerprint and security ink applications. Ceram. Int. 5(49), 7223–7235 (2023). https://doi.org/10.1016/j.ceramint.2022.06.005

    Article  CAS  Google Scholar 

  27. B. Wang, H. Lin, F. Huang et al., Non-rare-earth BaMgAl10–2xO17: xMn4+, xMg2+: a narrow-band red phosphor for use as a high-power warm w-LED. Chem. Mater. 10(28), 3515–3524 (2016). https://doi.org/10.1021/acs.chemmater.6b01303

    Article  ADS  CAS  Google Scholar 

  28. J.G. Acheson, L. Robinson, S. McKillop et al., TOFSIMS and XPS characterisation of strontium in amorphous calcium phosphate sputter deposited coatings. Mater. C. 171, 110739 (2021). https://doi.org/10.1016/j.matchar.2020.110739

    Article  CAS  Google Scholar 

  29. A. Boyd, M. Akay, B.J. Meenan, Influence of target surface degradation on the properties of RF magnetron-sputtered calcium phosphate coatings. Surf. Interface Anal. 2(35), 1880198 (2003). https://doi.org/10.1002/sia.1512

    Article  CAS  Google Scholar 

  30. B. Ramulu, S.C. Sekhar, S.J. Arbaz et al., Nickel–cobalt phosphate nanoparticle-layer shielded in-situ grown copper–nickel molybdate nanosheets for electrochemical energy storage. Energy Storage Mater. 44, 379–389 (2022). https://doi.org/10.1016/j.ensm.2021.10.027

    Article  Google Scholar 

  31. A. Belosludtsev, K. Juškevičius, L. Ceizaris et al., Correlation between stoichiometry and properties of scandium oxide films prepared by reactive magnetron sputtering. Appl. Surf. Sci. 427, 312–318 (2018). https://doi.org/10.1016/j.apsusc.2017.08.068

    Article  ADS  CAS  Google Scholar 

  32. V.V. Kaichev, E.V. Ivanova, M.V. Zamoryanskaya et al., XPS and cathodoluminescence studies of HfO2, Sc2O3 and (HfO2) 1–x(Sc2O3)x films. Eur. Phys. J. Appl. Phys. 1(64), 10302 (2013). https://doi.org/10.1051/epjap/2013130005

    Article  CAS  Google Scholar 

  33. S. Asal, M. Saif, H. Hafez et al., Photocatalytic generation of useful hydrocarbons and hydrogen from acetic acid in the presence of lanthanide modified TiO2. Int. J. Hydrog. Energy 36(11), 6529–6537 (2011). https://doi.org/10.1016/j.ijhydene.2011.02.066

    Article  CAS  Google Scholar 

  34. J. Divya, N.J. Shivaramu, W.D. Roos et al., Synthesis, surface and photoluminescence properties of Sm3+ doped α-Bi2O3. J. Alloy. Compd. 854, 157221 (2021). https://doi.org/10.1016/j.jallcom.2020.157221

    Article  CAS  Google Scholar 

  35. T. Umehara, M. Hagiwara, S. Fujihara, Synthesis of hollow and aggregated CeO2: Sm3+ microspheres and their redox-responsive luminescence. J. Alloy. Compd. 787, 1074–1081 (2019). https://doi.org/10.1016/j.jallcom.2019.02.129

    Article  CAS  Google Scholar 

  36. B. Deng, C. Zhou, H. Liu et al., Synthesis and optical properties of orange–red emitting Sm3+-activated Ca9LiGd2/3(PO4)7 phosphors. J. Mater. Sci. Mater. Elec. 29, 13731–13736 (2018). https://doi.org/10.1007/s10854-018-9503-4

    Article  CAS  Google Scholar 

  37. M. Bakr, Ü.H. Kaynar, M. Ayvacikli et al., Synthesis and competitive luminescence quenching mechanism of Ca3Al2O6: Ln3+ (Ln: Dy and Sm) phosphors. Mater. Res. Bull. 132, 111010 (2020). https://doi.org/10.1016/j.materresbull.2020.111010

    Article  CAS  Google Scholar 

  38. M. Zhao, Y. Liu, D. Liu et al., Effects of Bi3+ ions on luminescence properties of ZnWO4: Eu3+, Sm3+, Bi3+ nanorods. J. Mater. Sci. 16(53), 11512–11523 (2018). https://doi.org/10.1007/s10853-018-2329-x

    Article  ADS  CAS  Google Scholar 

  39. B. Su, H. Xie, Y. Tan et al., Luminescent properties, energy transfer, and thermal stability of double perovskites La2MgTiO6: Sm3+, Eu3+. J. Lumin. 204, 457–463 (2018). https://doi.org/10.1016/j.jlumin.2018.08.013

    Article  CAS  Google Scholar 

  40. J. Wang, Y. Feng, R. Li et al., Luminescence and energy transfer properties of single-component Mg0.5Ti2 (PO4)3: Dy3+, Eu3+ for warm white UV LEDs. J. Alloy. Compd. 702, 120–125 (2017). https://doi.org/10.1016/j.jallcom.2017.01.247

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Project for the Growth of Young Scientific and Technological Talents in General Higher Education Institutions in Guizhou Province (Qian jiao he KY zi [2022] No. 348), the National Natural Science Foundation of China (No. 52268001), the Guiyang Scientific and Technological Achievements Transformation Plan Project (No.[2022]5-8), the Natural science Research project of the Education Department of Guizhou Province (No.QJJ[2022]001), the Natural science Research project of the Education Department of Guizhou Province (No.QJJ[2023]022, No.QJJ[2023]077), the Science and Technology Support Plan Project of Guizhou Province (Grant [2020]4Y041).

Author information

Authors and Affiliations

Authors

Contributions

CW: Conceptualization, Writing-original draft, Data curation, Software. ZS: Formal analysis, Investigation, Visualization. JZ: Methodology, Investigation, Validation. JR: Funding acquisition, Supervision, Writing–review & editing, Validation, Project administration, Resources.

Corresponding author

Correspondence to Jingyu Ran.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, C., Sun, Z., Ran, J. et al. Orange red Ca9Sc(PO4)7: Sm3+ phosphor with excellent thermal stability for solid state lighting. Appl. Phys. A 130, 135 (2024). https://doi.org/10.1007/s00339-023-07267-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-07267-9

Keywords

Navigation