Skip to main content
Log in

Correlation between surface structure of carbon dots and selective detection of heavy metal ions

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Carbon dots (CDs) have been widely used in metal-ion detection and are promising candidates for applications in chemical sensors and biomedicine. However, the abundant functional species on the surface of CDs often result in simultaneous response to multiple metal ions and poor selectivity. To realize the selective detection of metal ions, it is crucial to establish the correlation between the surface structure of CDs and metal-ion detection. Herein, CDs with different surface structures were synthesized under harsh thermal microwave reaction. The CDs have citric acid-like, polyethylene glycol-like (PEG-like), or polyethyleneimine-like (PEI-like) surfaces in combination with 4-hydroxy-1H-pyrrolo[3,4-c]pyridine-1,3,6(2H,5H)-trione (HPPT); and amide bonds were found in the lactam structure of HPPT. Different surface species can be distinguished to recognize Fe3+, Cu2+, and Hg2+ ions. Accordingly, organic species of PEG, HPPT, and PEI were used to functionalize carbon nanoparticles to prepare targeting functionalized CDs. The PEG/CDs and HPPT/CDs have high selectivity for Fe3+ and Hg2+ ions, while the PEI/CDs have high selectivity for Cu2+ ions, eliminating the interference of -NH combining Co2+, Mn2+, and Ni2+ ions. Our findings shed light on the correlation between the surface structure of CDs and selective detection of metal ions, which can expand the sensing applications of CDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in the article and the supplementary file.

References

  1. Q. Ma, Y. Yu, M. Sindoro, A.G. Fane, R. Wang, H. Zhang, Carbon-based functional materials derived from waste for water remediation and energy storage. Adv. Mater. 29, 1605361 (2017)

    Google Scholar 

  2. Y. Peng, H. Huang, Y. Zhang, C. Kang, S. Chen, L. Song, D. Liu, C. Zhong, A versatile MOF-based trap for heavy metal ion capture and dispersion. Nat. Commun. 9, 1–9 (2018)

    ADS  Google Scholar 

  3. X. Zhang, Y. Li, Y. Wang, X. Liu, F. Jiang, Y. Liu, P. Jiang, Nitrogen and sulfur co-doped carbon dots with bright fluorescence for intracellular detection of iron ion and thiol. J. Colloid Interf. Sci. 611, 255–264 (2022)

    ADS  CAS  Google Scholar 

  4. C.B. Godiya, X. Cheng, D. Li, Z. Chen, X. Lu, Carboxymethyl cellulose/ polyacrylamide composite hydrogel for cascaded treatment/reuse of heavy metal ions in wastewater. J. Hazard. Mater. 364, 28–38 (2019)

    PubMed  CAS  Google Scholar 

  5. S. Yu, W. Li, Y. Fujii, T. Omura, H. Minami, Fluorescent spherical sponge cellulose sensors for highly selective and semiquantitative visual analysis: detection of Hg2+ and Cu2+ ions. ACS Sustain. Chem. Eng. 7, 19157–19166 (2019)

    CAS  Google Scholar 

  6. Y. Yan, J. Gong, J. Chen, Z. Zeng, W. Huang, K. Pu, J. Liu, P. Chen, Recent advances on graphene quantum dots: from chemistry and physics to applications. Adv. Mater. 31, 1808283 (2019)

    Google Scholar 

  7. S.Y. Lim, W. Shen, Z. Gao, Carbon quantum dots and their applications. Chem. Soc. Rev. 44, 362–381 (2015)

    PubMed  CAS  Google Scholar 

  8. H. Li, X. He, Z. Kang, H. Huang, Y. Liu, J. Liu, S. Lian, C.H.A. Tsang, X. Yang, S.T. Lee, Water-soluble fluorescent carbon quantum dots and photocatalyst design. Angew. Chem. Int. Ed. 49, 4430–4434 (2010)

    CAS  Google Scholar 

  9. A. Zhao, Z. Chen, C. Zhao, N. Gao, J. Ren, X. Qu, Recent advances in bioapplications of C-dots. Carbon 85, 309–327 (2015)

    CAS  Google Scholar 

  10. Y. Hu, M.M. Al Awak, F. Yang, S. Yan, Q. Xiong, P. Wang, Y. Tang, L. Yang, G.E. LeCroy, X. Hou, C.E. Bunker, L. Xu, N. Tomlinson, Y.P. Sun, Photoexcited state properties of carbon dots from thermally induced functionalization of carbon nanoparticles. J. Mater. Chem. C 4, 10554–10561 (2016)

  11. J. Dong, B. Li, J. Xiao, G. Liu, V. Baulin, Y. Feng, D. Jia, A.Y. Tsivadze, Y. Zhou, Carbon dots with tailor-made chelating ligands for specific metal ions recognition: target synthesis and prediction of metal ions selectivity. Carbon 199, 151–160 (2022)

    CAS  Google Scholar 

  12. R. Dai, Y. Hu, Green/red dual emissive carbon dots for ratiometric fluorescence detection of acid red 18 in food. Sens. Actuat. B 370, 132420 (2022)

    CAS  Google Scholar 

  13. L. Tong, X. Wang, Z. Chen, Y. Liang, Y. Yang, W. Gao, Z. Liu, B. Tang, One-step fabrication of functional carbon dots with 90% fluorescence quantum yield for long-term lysosome imaging. Anal. Chem. 92, 6430–6436 (2020)

    PubMed  CAS  Google Scholar 

  14. Y. Meng, Y. Jiao, Y. Zhang, H. Zhang, X. Gong, Y. Liu, S. Shuang, C. Dong, One-step synthesis of red emission multifunctional carbon dots for label-free detection of berberine and curcumin and cell imaging. Spectrochim. Acta A 251, 119432 (2021)

    CAS  Google Scholar 

  15. X. Zheng, S. Ren, L. Wang, Q. Gai, Q. Dong, W. Liu, Controllable functionalization of carbon dots as fluorescent sensors for independent Cr(VI), Fe (III) and Cu(II) ions detection. J. Photochem. Photobiol. A 417, 113359 (2021)

    CAS  Google Scholar 

  16. J. Yu, X. Yong, Z. Tang, B. Yang, S. Lu, Theoretical understanding of structure-property relationships in luminescence of carbon dots. J. Phys. Chem. Lett. 12, 7671–7687 (2021)

    PubMed  CAS  Google Scholar 

  17. S. Sawalha, A. Silvestri, A. Criado, S. Bettini, M. Prato, L. Valli, Tailoring the sensing abilities of carbon nanodots obtained from olive solid wastes. Carbon 167, 696–708 (2020)

    CAS  Google Scholar 

  18. F. Niu, Y. Ying, X. Hua, Y. Niu, Y. Xu, Y. Long, Electrochemically generated green-fluorescent N-doped carbon quantum dots for facile monitoring alkaline phosphatase activity based on the Fe3+-mediating ON-OFF-ON-OFF fluorescence principle. Carbon 127, 340–348 (2018)

    CAS  Google Scholar 

  19. W. Lu, X. Qin, S. Liu, G. Chang, Y. Zhang, Y. Luo, A.M. Asiri, A.O. Al-Youbi, X. Sun, Economical, green synthesis of fluorescent carbon nanoparticles and their use as probes for sensitive and selective detection of mercury (II) ions. Anal. Chem. 84, 5351–5357 (2012)

    PubMed  CAS  Google Scholar 

  20. X. Zheng, W. Liu, Q. Gai, Z. Tian, S. Ren, A carbon-dot-based fluorescent probe for the sensitive and selective detection of copper (II) ions. Chemistry Select 4, 2392–2397 (2019)

    CAS  Google Scholar 

  21. Q. Liu, N. Zhang, H. Shi, W. Ji, X. Guo, W. Yuan, Q. Hu, One-step microwave synthesis of carbon dots for highly sensitive and selective detection of copper ions in aqueous solution. New J. Chem. 42, 3097–3101 (2018)

    CAS  Google Scholar 

  22. W. Kasprzyk, T. Świergosz, S. Bednarz, K. Walas, N.V. Bashmakova, D. Bogdał, Luminescence phenomena of carbon dots derived from citric acid and urea–a molecular insight. Nanoscale 10, 13889–13894 (2018)

    PubMed  CAS  Google Scholar 

  23. V. Strauss, H. Wang, S. Delacroix, M. Ledendecker, P. Wessig, Carbon nanodots revised: the thermal citric acid/urea reaction. Chem. Sci. 11, 8256–8266 (2020)

    PubMed  PubMed Central  CAS  Google Scholar 

  24. K.J. Mintz, M. Bartoli, M. Rovere, Y. Zhou, S.D. Hettiarachchi, S. Paudyal, J. Chen, J.B. Domena, P.Y. Liyanage, R. Sampson, D. Khadka, R.R. Pandey, S. Huang, C.C. Chusuei, A. Tagliaferro, R.M. Leblanc, A deep investigation into the structure of carbon dots. Carbon 173, 433–447 (2021)

    CAS  Google Scholar 

  25. L. Ge, N. Pan, J. Jin, P. Wang, G.E. LeCroy, W. Liang, L. Yang, L.R. Teisl, Y. Tang, Y.P. Sun, Systematic comparison of carbon dots from different preparations-consistent optical properties and photoinduced redox characteristics in visible spectrum and structural and mechanistic implications. J. Phys. Chem. C 122, 21667–21676 (2018)

    CAS  Google Scholar 

  26. F. Yang, G.E. LeCroy, P. Wang, W. Liang, J. Chen, K.S. Fernando, C.E. Bunker, H. Qian, Y.P. Sun, Functionalization of carbon nanoparticles and defunctionalization-toward structural and mechanistic elucidation of carbon “quantum” dots. J. Phys. Chem. C 120, 25604–25611 (2016)

    CAS  Google Scholar 

  27. X. Wang, L. Cao, S.T. Yang, F. Lu, M.J. Meziani, L. Tian, K.W. Sun, M.A. Bloodgood, Y.P. Sun, Bandgap-like strong fluorescence in functionalized carbon nanoparticles. Angew. Chem. Int. Ed. 49, 5310–5314 (2010)

    CAS  Google Scholar 

  28. G. Hu, L. Ge, Y. Li, M. Mukhtar, B. Shen, D. Yang, J. Li, Carbon dots derived from flax straw for highly sensitive and selective detections of cobalt, chromium, and ascorbic acid. J. Colloid Interf. Sci. 579, 96–108 (2020)

    ADS  CAS  Google Scholar 

  29. L. Cao, X. Wang, M.J. Meziani, F. Lu, H. Wang, P.G. Luo, Y. Lin, B.A. Harruff, L.M. Veca, D. Murray, S.Y. Xie, Y.P. Sun, Carbon dots for multiphoton bioimaging. J. Am. Chem. Soc. 129, 11318–11319 (2007)

    PubMed  PubMed Central  CAS  Google Scholar 

  30. X. Hou, Y. Hu, P. Wang, L. Yang, M.M. Al Awak, Y. Tang, F.K. Twara, H. Qian, Y. P. Sun, Modified facile synthesis for quantitatively fluorescent carbon dots. Carbon 122, 389–394 (2017)

  31. F.G. de A Dias, A.G. Veiga, A.P.A. da CP Gomes, M.F. da Costa, M.L.M. Rocco, Using XPS and FTIR spectroscopies to investigate polyamide 11 degradation on aging flexible risers. Polym. Degrad. Stabil. 195, 109787 (2022)

  32. X. Ma, C. Pang, S. Li, Y. Xiong, J. Li, J. Luo, Y. Yang, Synthesis of Zr-coordinated amide porphyrin-based two-dimensional covalent organic framework at liquid-liquid interface for electrochemical sensing of tetracycline. Biosens. Bioelectron. 146, 111734 (2019)

    PubMed  CAS  Google Scholar 

  33. P. Lazar, R. Mach, M. Otyepka, Spectroscopic fingerprints of graphitic, pyrrolic, pyridinic, and chemisorbed nitrogen in N-doped graphene. J. Phys. Chem. C 123, 10695–10702 (2019)

    CAS  Google Scholar 

  34. Y. Zhang, X. Fang, H. Zhao, Z. Li, A highly sensitive and selective detection of Cr (VI) and ascorbic acid based on nitrogen-doped carbon dots. Talanta 181, 318–325 (2018)

    PubMed  CAS  Google Scholar 

  35. C. Oliveira, C.R. Chaves, P. Bargiela, M.D.G.C. da Rocha, A.F. da Silva, J.F.D. Chubaci, M. Bostrom, C. Persson, M. Malta, Surface studies of the chemical environment in gold nanorods supported by X-ray photoelectron spectroscopy (XPS) and ab initio calculations. J. Mater. Res. Technol. 15, 768–776 (2021)

    CAS  Google Scholar 

  36. Y. Liang, Y. Wang, H. Mi, L. Sun, D. Ma, H. Li, C. He, P. Zhang, Functionalized carbon nanofiber interlayer towards dendrite-free Zn-ion batteries. Chem. Eng. J. 425, 131862 (2021)

    CAS  Google Scholar 

  37. X. Lu, C. Liu, Z. Wang, J. Yang, M. Xu, J. Dong, P. Wang, J. Gu, F. Cao, Nitrogen-doped carbon nanoparticles derived from silkworm excrement as on–off–on fluorescent sensors to detect Fe (III) and biothiols. Nanomaterials 8, 443 (2018)

    PubMed  PubMed Central  Google Scholar 

  38. R.T. Gao, D. He, L. Wu, K. Hu, X. Liu, Y. Su, L. Wang, Towards long-term photostability of nickel hydroxide/BiVO4 photoanodes for oxygen evolution catalysts via in situ catalyst tuning. Angew. Chem. Int. Ed. 132, 6272–6277 (2020)

    ADS  Google Scholar 

  39. Y. Qiu, D. Gao, H. Yin, K. Zhang, J. Zeng, L. Wang, L. Xia, K. Zhou, Z. Xia, Q. Fu, Facile, green and energy-efficient preparation of fluorescent carbon dots from processed traditional Chinese medicine and their applications for on-site semi-quantitative visual detection of Cr (VI). Sens. Actuat. B 324, 128722 (2020)

    CAS  Google Scholar 

  40. Y. Li, L. Tang, C. Zhu, X. Liu, X. Wang, Y. Liu, Fluorescent and colorimetric assay for determination of Cu (II) and Hg (II) using AuNPs reduced and wrapped by carbon dots. Microchim. Acta 189, 1–11 (2022)

    ADS  CAS  Google Scholar 

  41. G. Wang, S. Zhang, J. Cui, W. Gao, X. Rong, Y. Lu, C. Gao, Novel highly selective fluorescence sensing strategy for Mercury (II) in water based on nitrogen-doped carbon quantum dots. Spectrochim. Acta A 286, 122010 (2023)

    CAS  Google Scholar 

  42. V. Dugandžić, S. Kupfer, M. Jahn, T. Henkel, K. Weber, D. Cialla-May, J. Popp, A SERS-based molecular sensor for selective detection and quantification of copper (II) ions. Sens. Actuat. B 279, 230–237 (2019)

    Google Scholar 

  43. P. Ndokoye, J. Ke, J. Liu, Q. Zhao, X. Li, L-cysteine-modified gold nanostars for SERS-based copper ions detection in aqueous media. Langmuir 30, 13491–13497 (2014)

    PubMed  CAS  Google Scholar 

  44. X. Zhang, Z. Dai, S. Si, X. Zhang, W. Wu, H. Deng, F. Wang, X. Xiao, C. Jiang, Ultrasensitive SERS substrate integrated with uniform subnanometer scale “hot spots” created by a graphene spacer for the detection of mercury ions. Small 13, 1603347 (2017)

    Google Scholar 

  45. V. Ramanan, B. Siddaiah, K. Raji, P. Ramamurthy, Green synthesis of multifunctionalized, nitrogen-doped, highly fluorescent carbon dots from waste expanded polystyrene and its application in the fluorimetric detection of Au3+ ions in aqueous media. ACS Sustain. Chem. Eng. 6, 1627–1638 (2018)

    CAS  Google Scholar 

  46. F. Zu, F. Yan, Z. Bai, J. Xu, Y. Wang, Y. Huang, X. Zhou, The quenching of the fluorescence of carbon dots: a review on mechanisms and applications. Microchim. Acta 184, 1899–1914 (2017)

    CAS  Google Scholar 

  47. X. Gao, X. Zhou, Y. Ma, T. Qian, C. Wang, F. Chu, Facile and cost-effective preparation of carbon quantum dots for Fe3+ ion and ascorbic acid detection in living cells based on the ‘‘on-off-on” fluorescence principle. Appl. Surf. Sci. 469, 911–916 (2019)

    ADS  CAS  Google Scholar 

  48. F. Yan, F. Zu, J. Xu, X. Zhou, Z. Bai, C. Ma, Y. Luo, L. Chen, Fluorescent carbon dots for ratiometric detection of curcumin and ferric ion based on inner filter effect, cell imaging and PVDF membrane fouling research of iron flocculants in wastewater treatment. Sens. Actuat. B 287, 231–240 (2019)

    CAS  Google Scholar 

  49. F. Wang, Q. Hao, Y. Zhang, Y. Xu, W. Lei, Fluorescence quenchometric method for determination of ferric ion using boron-doped carbon dots. Microchim. Acta 183, 273–279 (2016)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51772137).

Author information

Authors and Affiliations

Authors

Contributions

GH: conceptualization, methodology, software, formal analysis, data curation, writing—original draft, and investigation. ZP: software and validation. BS: resources. YL: resources. WW: resources. JZ: resources. JL: conceptualization, writing—review & editing, supervision, and project administration.

Corresponding author

Correspondence to Jiangong Li.

Ethics declarations

Conflict of interest

The authors have no competing interests that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 3064 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, G., Pei, Z., Shen, B. et al. Correlation between surface structure of carbon dots and selective detection of heavy metal ions. Appl. Phys. A 130, 122 (2024). https://doi.org/10.1007/s00339-023-07265-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-07265-x

Keywords

Navigation