Skip to main content
Log in

Effect of halide anions on the morphology of anisotropic silver nanoparticles printed on paper and applications in selective sensing

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Selective and sensitive detection of halides in water is critically important in the diagnosis of diseases and assessment of aquatic ecosystems. The recognition is usually carried out by numerous analytical techniques such as ion chromatography, fluorescence, near-infrared spectroscopy, ion-selective electrode and light scattering. Although these methods offer high sensitivity, they are expensive and time-consuming. Therefore, great efforts have been focused on the sensing of halide anions in water through a simple, fast, low-cost and portable paper-based colorimetric platform. In particular, the sensing process with silver nanoparticles interacting with analytes is of great chemical and biological interest. In this work, anisotropic silver nanoparticles in size and shape embedded in epoxy resin were prepared and subsequently printed on filter papers of cellulose. The influence of water and halide anions (Cl, Br and I) on the morphology of these nanoparticles are investigated by scanning electron microscopy, Raman shift and diffuse reflectance spectroscopy. The mechanism involves aggregation of faceted silver nanoparticles induced by interactions between carbonyl groups of the resin and water. Subsequently, the interaction between halide anions and the aggregated silver nanoparticles causes oxidative etching on their surface, shape conversion (faceted to quasi-spherical shapes), decreasing in the particle size and formation of chain–like or compact aggregates resulting in strong interparticle plasmonic coupling. This selective mechanism was tested for the naked-eye colorimetric recognition of chloride anions in a complex simulated physiological system, whose results show promising perspectives to develop diagnostic-sensing devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. K. Sandeep, K.T. Hamida, CsPbBr 3 perovskite–coated paper substrate for the cost-effective detection of fluoride, chloride, and iodide ions in water. Phys. Status Solidi (A) 218, 2100101 (2021)

    Article  ADS  CAS  Google Scholar 

  2. R. Ma, M. Yan, P. Han, T. Wang, B. Li, S. Zhou, T. Zheng, Y. Hu, A.G.L. Borthwick, C. Zheng, J. Ni, Deficiency and excess of groundwater iodine and their health associations. Nat. Commun. 13, 7354 (2022)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  3. L. Trnkova, V. Adam, J. Hubalek, P. Babula, R. Kizek, Amperometric sensor for detection of chloride ions. Sensors 8, 5619–5636 (2008)

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  4. J. Zhang, X. Xu, C. Yang, F. Yang, X. Yang, Colorimetric iodide recognition and sensing by citrate-stabilized core/shell Cu@ Au nanoparticles. Anal. Chem. 83, 3911–3917 (2011)

    Article  PubMed  CAS  Google Scholar 

  5. M.J. Langton, C.J. Serpell, P.D. Beer, Anion recognition in water: recent advances from a supramolecular and macromolecular perspective. Angew. Chem. 55, 1974–1987 (2016)

    Article  CAS  Google Scholar 

  6. Z. Zhang, H. Wang, Z. Chen, X. Wang, J. Choo, L. Chen, Plasmonic colorimetric sensors based on etching and growth of noble metal nanoparticles: Strategies and applications. Biosens. Bioelectron. 114, 52–65 (2018)

    Article  PubMed  CAS  Google Scholar 

  7. N.H. Anh, M.Q. Doan, N.X. Dinh, T.Q. Huy, D.Q. Tri, B. Van Hao, A.T. Le, Gold nanoparticle-based optical nanosensors for food and health safety monitoring: recent advances and future perspectives. RSC Adv. 12(18), 10950–10988 (2022)

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  8. J. Zeng, Y. Zhang, T. Zeng, R. Aleisa, Z. Qiu, Y. Chen, Y. Yin, Anisotropic plasmonic nanostructures for colorimetric sensing. Nano Today 32, 100855 (2020)

    Article  CAS  Google Scholar 

  9. F. Qu, N.B. Li, H.Q. Luo, Polyethyleneimine-templated Ag nanoclusters: a new fluorescent and colorimetric platform for sensitive and selective sensing halide ions and high disturbance-tolerant recognitions of iodide and bromide in coexistence with chloride under condition of high ionic strength. Anal. Chem. 84, 10373–10379 (2012)

    Article  PubMed  CAS  Google Scholar 

  10. X.C. Jiang, A.B. Yu, Silver nanoplates: a highly sensitive material toward inorganic anions. Langmuir 24, 4300–4309 (2008)

    Article  PubMed  CAS  Google Scholar 

  11. M.S. Hsu, Y.W. Cao, H.W. Wang, Y.S. Pan, B.H. Lee, C.L. Huang, Time-dependent surface plasmon resonance spectroscopy of silver nanoprisms in the presence of halide ions. ChemPhysChem 11, 1742–1748 (2010)

    Article  PubMed  CAS  Google Scholar 

  12. Y. Gu, S. Kong, X. Diao, Y. Guo, K. Zhang, H. He, Mechanistic study on the facet etching effect of silver nanoprisms in the presence of halide ions and their application in the colorimetric sensing of metformin hydrochloride. New J. Chem. 40, 7557–7563 (2016)

    Article  CAS  Google Scholar 

  13. Y. Ma, X.F. Shen, F. Liu, Y.H. Pang, Colorimetric detection toward halide ions by a silver nanocluster hydrogel. Talanta 211, 120717 (2020)

    Article  PubMed  CAS  Google Scholar 

  14. D. Jiang, B. Tang, H. Guo, W. Xu, S. Xu, Halide ions sensing in water via silver nanoprism self-assembled chips. Sci. Adv. Mater. 5, 1105–1110 (2013)

    Article  CAS  Google Scholar 

  15. A. Yakoh, P. Rattanarat, W. Siangproh, O. Chailapakul, Simple and selective paper-based colorimetric sensor for determination of chloride ion in environmental samples using label-free silver nanoprisms. Talanta 178, 134–140 (2018)

    Article  PubMed  CAS  Google Scholar 

  16. A. Franco, C. Velásquez-Ordoñez, M. Ojeda-Martínez, M. Ojeda-Martínez, E. Barrera-Calva, V. Rentería-Tapia, Paper-based colorimetric sensor for detection of chloride anions in water using an epoxy-silver nanocomposite. J. Nanopart. Res. 24, 54 (2022)

    Article  ADS  CAS  Google Scholar 

  17. M. Maruthupandi, M. Chandhru, S.K. Rani, N. Vasimalai, Highly selective detection of iodide in biological, food, and environmental samples using polymer-capped silver nanoparticles: Preparation of a paper-based testing kit for on-site monitoring. ACS Omega 4, 11372–11379 (2019)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. V. Rentería-Tapia, E. Barrera-Calva, Evaluación de un nanocompuesto plata-epoxi impreso en papel para la detección selectiva de aniones yoduro en agua, in Paper presented at the 9th Congress of the Academia Journals. San Cristobal de las Casas, Chiapas 29–30 June (2023)

  19. M.G. Espinoza, M.L. Hinks, A.M. Mendoza, D.P. Pullman, K.I. Peterson, Kinetics of halide-induced decomposition and aggregation of silver nanoparticles. J. Phys. Chem. C 116, 8305–8313 (2012)

    Article  CAS  Google Scholar 

  20. M.M. Jiang, H.Y. Chen, B.H. Li, K.W. Liu, C.X. Shan, D.Z. Shen, Hybrid quadrupolar resonances stimulated at short wavelengths using coupled plasmonic silver nanoparticle aggregation. J. Mater. Chem. C 2, 56–63 (2014)

    Article  CAS  Google Scholar 

  21. A. Dager, T. Uchida, T. Maekawa, M. Tachibana, Synthesis and characterization of mono-disperse carbon quantum dots from fennel seeds: photoluminescence analysis using machine learning. Sci. Rep. 9, 14004 (2019)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  22. A. Bos, The UV spectra of cellulose and some model compounds. J. Appl. Polym. Sci. 16, 2567–2576 (1972)

    Article  CAS  Google Scholar 

  23. K.B. Teodoro, F.L. Migliorini, M.H. Facure, D.S. Correa, Conductive electrospun nanofibers containing cellulose nanowhiskers and reduced graphene oxide for the electrochemical detection of mercury (II). Carbohydr. Polym.. Polym. 207, 747–754 (2019)

    Article  CAS  Google Scholar 

  24. T. Bikova, A. Treimanis, UV-absorbance of oxidized xylan and monocarboxyl cellulose in alkaline solutions. Carbohydr. Polym.. Polym. 55, 315–322 (2004)

    Article  CAS  Google Scholar 

  25. Y. Pu, A.J. Ragauskas, L.A. Lucia, V. Naithani, H. Jameel, Near-infrared spectroscopy and chemometric analysis for determining oxygen delignification yield. J. Wood Chem. Technol. 28, 122–136 (2008)

    Article  CAS  Google Scholar 

  26. M.R.M. Izawa, D.M. Applin, L. Norman, E.A. Cloutis, Reflectance spectroscopy (350–2500 nm) of solid-state polycyclic aromatic hydrocarbons (PAHs). Icarus 237, 159–181 (2014)

    Article  ADS  CAS  Google Scholar 

  27. V.R. Tapia, M.S. Tizapa, E.R. Mora, M.L.O. Martínez, A. Franco, E.B. Calva, Solvent-induced morphological changes of polyhedral silver nanoparticles in epoxy resin. Plasmonics 11, 1417–1426 (2016)

    Article  CAS  Google Scholar 

  28. M.A. Lucchini, E. Lizundia, S. Moser, M. Niederberger, G. Nystrom, Titania-cellulose hybrid monolith for in-flow purification of water under solar illumination. ACS Appl. Mater. Interfaces 10, 29599–29607 (2018)

    Article  CAS  Google Scholar 

  29. R.L. Garrell, K.D. Shaw, S. Krimm, Surface enhanced Raman spectroscopy of halide ions on colloidal silver: morphology and coverage dependence. Surf. Sci. 124, 613–624 (1983)

    Article  ADS  CAS  Google Scholar 

  30. Y. Zhang, S. Prabakar, E.C. Le Ru, Coadsorbed species with halide ligands on silver nanoparticles with different binding affinities. J. Phys. Chem. C 126, 8692–8702 (2022)

    Article  CAS  Google Scholar 

  31. J. Weber, W. Von Der Osten, Resonant multiphonon Raman scattering in AgBr. Z. Phys. B Condens. Matter. 24, 343–349 (1976)

    Article  ADS  CAS  Google Scholar 

  32. I. Martina, R. Wiesinger, D. Jembrih-Simbürger, M. Schreiner, Micro-Raman characterisation of silver corrosion products: instrumental set up and reference database. e-Preserv. Sci. 9, 1–8 (2012)

    CAS  Google Scholar 

  33. U.P. Agarwal, 1064 nm FT-Raman spectroscopy for investigations of plant cell walls and other biomass materials. Front. Plant Sci. 5, 490 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  34. M. Nilsson, Water-induced charge transport in microcrystalline cellulose (Doctoral dissertation, Acta Universitatis Upsaliensis) (2006)

  35. K.Z. Voter, C.L. Ren, Diagnosis of cystic fibrosis. Clin. Rev. Allergy Immunol. 35, 100–106 (2008)

    Article  PubMed  CAS  Google Scholar 

  36. M.R. Marques, R. Loebenberg, M. Almukainzi, Simulated biological fluids with possible application in dissolution testing. Dissolut. Technol.. Technol. 18, 15–28 (2011)

    Article  CAS  Google Scholar 

  37. H.S. Toh, C. Batchelor-McAuley, K. Tschulik, R.G. Compton, Electrochemical detection of chloride levels in sweat using silver nanoparticles: a basis for the preliminary screening for cystic fibrosis. Analyst 138, 4292–4297 (2013)

    Article  ADS  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Víctor Rentería-Tapia grateful to CONAHCYT for the grant fellowship. The authors thank Dra. Miriam Tostado Plascencia and Environment and Renewable Energy Laboratory (CUVALLES-UdG) for the support given in the optical measurements.

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

VR-T carried out experiments and preparation of the samples, analysis of results, writing and contributed to design, supervision and implementation of the investigation. EB-C contributed to analysis of results, writing and revision of the manuscript. All the authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Víctor Rentería-Tapia.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 366 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rentería-Tapia, V., Barrera-Calva, E. Effect of halide anions on the morphology of anisotropic silver nanoparticles printed on paper and applications in selective sensing. Appl. Phys. A 130, 114 (2024). https://doi.org/10.1007/s00339-023-07262-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-07262-0

Keywords

Navigation