Skip to main content

Advertisement

Log in

Investigation of ultrafast laser surface patterning and nanocrystalline formation on CrTiN alloy films for enhanced cell proliferation

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Titanium (Ti)-based alloys are eye-catching biomaterials extensively utilized in human implants due to their outstanding ability to facilitate cell growth. This research aims to propose a new approach to explore the ultrafast laser processing on alloy surfaces for achieving and regulating the proliferation of biological cells. The study is to directly use the polarization of ultrafast laser irradiation on the surface of chromium-titanium nitride (CrTiN) thin film to fabricate the periodic structures, which can promote cell proliferation. This improvement is accomplished by employing surface patterning and creating nanocrystalline structures. The nanocrystalline layer is treated with laser-induced periodic surface structures (LIPSS), forming subwavelength ripples directly on the surface. The ripples are preferentially formed perpendicular to the direction of laser polarization by controlling the fluence. Through the straightforward technique of ultrafast laser treatment, the wettability transition is contributed to by the combination of LIPSS and modified surface chemistry. It is indicated by the findings that the laser-irradiated CrTiN alloy film exhibits surface ripples and a nanocrystalline phase. This work has the potential to enhance cell proliferation for biomedical engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All the data generated or analyzed during this investigation is included in this article.

References

  1. M. Moraskie, M.H.O. Roshid, G. O’Connor, J. Zingg, S. Daunert, Microbial whole-cell biosensors: Current applications, challenges, and future perspectives. Biosens. Bioelectron. 191, 113359 (2021)

    PubMed  PubMed Central  Google Scholar 

  2. M. Samandari, F. Saeedinejad, J. Quint, S.Y. Chuah, R. Farzad, A. Tamayol, Repurposing biomedical muscle tissue engineering for cellular agriculture: challenges and opportunities. Trends Biotechnol. 41, 887–906 (2023)

    PubMed  Google Scholar 

  3. A. Nazir, O. Gokcekaya, K. M. M. Billah, O. Ertugrul, J. Jiang, Ji. Sun, S. Hussain, Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials, Materials & Design. 226 111661 (2023).

  4. Y. Vorobyev, C. Guo, Multifunctional surfaces produced by femtosecond laser pulses. J. Appl. Phys. 117, 033103 (2015)

    ADS  Google Scholar 

  5. Z.C. Chen, T.L. Chang, C.C. Liu, W.T. Hsiao, C.H. Huang, Picosecond laser surface modification of aluminum oxide with fish-scale structures for cell culture. Ceram. Int. 46, 17651–17658 (2020)

    Google Scholar 

  6. C. Yao, S. Xu, Y. Ye, Y. Jiang, R. Ding, W. Gao, X. Yuan, The influence of femtosecond laser repetition rates and pulse numbers on the formation of micro/nano structures on stainless steel. J. Alloy.s Compd. 722, 235–241 (2017).

  7. O. Armbruster, A. Naghilou, M. Kitzler, W. Kautek, Spot size and pulse number dependence of femtosecond laser ablation thresholds of silicon and stainless steel. Appl. Surf. Sci. 396, 1736–1740 (2017)

    ADS  Google Scholar 

  8. J. Bonse, S. Höhm, S.V. Kirner, A. Rosenfeld, J. Krüger, Laser-induced periodic surface structures – a scientific evergreen. IEEE J. Sel. Top. Quantum Electron. 23, 9000615 (2017)

    Google Scholar 

  9. Z. Wu, K. Yin, J. Wu, Z. Zhu, J.A. Duan, J. He, Recent advances in femtosecond laser-structured Janus membranes with asymmetric surface wettability. Nanoscale 13, 2209–2226 (2021)

    PubMed  Google Scholar 

  10. O. Varlamova, C. Martens, M. Ratzke, J. Reif, Genesis of femtosecond-induced nanostructures on solid surfaces. Appl. Opt. 53, I10–I15 (2014)

    PubMed  Google Scholar 

  11. Z. Guosheng, P.M. Fauchet, A.E. Siegman, Growth of spontaneous periodic surface structures on solids during laser illumination. Phys. Rev. B 26, 5366 (1982)

    ADS  Google Scholar 

  12. J. Bonse, S. Gräf, Maxwell meets Marangoni—a review of theories on laser-induced periodic surface structures. Laser Photon. Rev. 14, 2000215 (2020)

    ADS  Google Scholar 

  13. F.A. Müller, C. Kunz, S. Gräf, Bio-inspired functional surfaces based on laser-induced periodic surface structures. Materials 9, 476 (2016)

    ADS  PubMed  PubMed Central  Google Scholar 

  14. K. Yin, H. Du, X. Dong, C. Wang, J.A. Duan, J. He, A simple way to achieve bioinspired hybrid wettability surface with micro/nanopatterns for efficient fog collection. Nanoscale 9, 14620–14626 (2017)

    PubMed  Google Scholar 

  15. S. Milles, M. Solderaa, T. Kuntze, A.F. Lasagni, Haracterization of self-cleaning properties on superhydrophobic aluminum surfaces fabricated by direct laser writing and direct laser interference patterning. Appl. Surf. Sci. 525, 146518 (2020)

    Google Scholar 

  16. A. Jorge-Mora, N. Imaz, E. Garcia-Lecina, G.M. O’Connor, R. Gómez-Vaamonde, A. Alonso-Pérez, E. Franco-Trepat, C. García-Santiago, J. Pino-Minguez, D. Nieto, In vitro response of bone marrow mesenchymal stem cells (hBMSCs) on laser-induced periodic surface structures for hard tissue replacement: comparison between tantalum and titanium. Opt. Lasers Eng. 111, 34–41 (2018)

    Google Scholar 

  17. A. Papadopoulos, E. Skoulas, A. Mimidis, G. Perrakis, G. Kenanakis, G.D. Tsibidis, E. Stratakis, Biomimetic omnidirectional antireflective glass via direct ultrafast laser nanostructuring. Adv. Mater. 31, 1901123 (2019)

    Google Scholar 

  18. M.M. Calderon, M.M. Silván, A. Rodríguez, M.G. Aranzadi, J.P.G. Ruiz, S.M. Olaizola, R.J.M. Palma, Surface micro- and nano-texturing of stainless steel by femtosecond laser for the control of cell migration. Sci. Rep. 6, 36296 (2016)

    ADS  Google Scholar 

  19. L.N. Wang, M. Jin, Y. Zheng, Y. Guan, X. Lu, J.L. Luo, Nanotubular surface modification of metallic implants via electrochemical anodization technique. Int. J. Nanomedicine 9, 4421–4435 (2014)

    PubMed  PubMed Central  Google Scholar 

  20. R. Van Noort, Review titanium: the implant material of today. J. Mater. Sci. 22, 3801–3811 (1987)

    ADS  Google Scholar 

  21. J.W. Du, L. Chen, J. Chen, Y. Du, Mechanical properties, thermal stability and oxidation resistance of TiN/CrN multilayer coatings. Vacuum 179, 109468 (2020)

    ADS  Google Scholar 

  22. X. Xu, F. Su, Z. Li, Microstructure and tribological behaviors of MoN-Cu nanocomposite coating sliding against Si3N4 ball under dry and oil-lubricated conditions. Wear 434–435, 202994 (2019)

    Google Scholar 

  23. S.C. Liao, C.Y. Chen, Y.H. Hsu, C.T. Li, C.C. Hsieh, M.S. Tsai, M.Y. Chen, C.C. Hung, S.H. Wang, S.K. Ng, H.K. Tsou, W.Y. Wu, In vitro and in vivo biocompatibility study of surface modified TiN deposited on Ti6Al4V using high-power impulse magnetron sputtering technique. Surf. Coat. Technol. 394, 0125814 (2020)

    Google Scholar 

  24. Q. Yang, L. R. Zhao, P. Patnaik Erosion performance, corrosion characteristics and hydrophobicity of nanolayered and multilayered metal nitride coatings. Surf. Coat. Technol. 375, 763–772 (2019).

  25. J.F. Correa, W. Aperador, J.C. Caicedo, N.C. Alba, C. Amaya, Structural mechanical and tribological behavior of TiCN, CrAlN and BCN coatings in lubricated and non-lubricated environments in manufactured devices. Mater. Chem. Phys. 252, 123164 (2020)

    Google Scholar 

  26. H. Chen, Y. Ye, C. Wang, X. Ma, W. Liu, Understanding the corrosion and tribological behaviors of CrSiN coatings with various Si contents in HCl solution. Tribol. Int. 131, 530–540 (2019)

    Google Scholar 

  27. J. Lin, N. Zhang, W. D. Sproul, J. J. Moore A comparison of the oxidation behavior of CrN films deposited using continuous DC, pulsed DC and modulated pulsed power magnetron sputtering. Surf. Coat. Technol. 206, 3283–3290 (2012).

  28. N. Yasumaru, K. Miyazaki, J. Kiuchi, Femtosecond-laser-induced nanostructure formed on hard thin films of TiN and DLC. Appl. Phys. A 76, 983–985 (2003)

    ADS  Google Scholar 

  29. X. Gao, W. Feng, Z. Zhu, Z. Wu, S. Li, S. Kan, X. Qiu, A. Guo, W. Chen, K. Yin, Rapid fabrication of superhydrophilic micro/nanostructured nickel foam toward high-performance glucose sensor. Adv. Mater. Interfaces 8, 2002133 (2021)

    Google Scholar 

  30. O. Raimbault, S. Benayoun, K. Anselme, C. Mauclair, T. Bourgade, A.M. Kietzig, P.L. Lauriault, S. Valette, C. Donnet, The effects of femtosecond laser-textured Ti-6Al-4V on wettability and cell response. Mater. Sci. Eng. C 69, 311–320 (2016)

    Google Scholar 

  31. E. Rebollar, I. Frischauf, M. Olbrich, T. Peterbauer, S. Hering, J. Preiner, P. Hinterdorfer, C. Romanin, J. Heitz, Proliferation of aligned mammalian cells on laser-nanostructured polystyrene. Biomaterials 29, 1796–1806 (2008)

    PubMed  Google Scholar 

  32. T. Shinonaga, M. Tsukamoto, T. Kawa, P. Chen, A. Nagai, T. Hanawa, Formation of periodic nanostructures using a femtosecond laser to control cell spreading on titanium. Appl. Phys. B 119, 493–496 (2015)

    ADS  Google Scholar 

  33. G.H. Balbus, M.P. Echlin, C.M. Grigorian, T.J. Rupert, T.M. Pollocka, D.S. Gianol, Femtosecond laser rejuvenation of nanocrystalline metals. Acta Mater. 156, 183–195 (2018)

    ADS  Google Scholar 

  34. H. Li, P. Wang, C. Wen, C. Wen, Recent progress on nanocrystalline metallic materials for biomedical applications. Nanomaterials 12, 2111 (2022)

    PubMed  PubMed Central  Google Scholar 

  35. F. Bray, J. Ferlay, I. Soerjomataram, R.L. Siegel, L.A. Torre, A. Jemal, Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68, 394–424 (2018)

    PubMed  Google Scholar 

  36. J. C. Nawroth, R. Barrile, D. Conegliano, S, V. Riet, P. S. Hiemstra, R. Villenave, Stem cell-based lung-on-chips: the best of both worlds? Adv Drug Deliv Rev. 140, 12–32 (2019).

  37. A. Kehal, N. Saoula, S.E.H. Abaidia, C. Nouveau, Effect of Ar/N2 flow ratio on the microstructure and mechanical properties of Ti-Cr-N coatings deposited by DC magnetron sputtering on AISI D2 tool steels. Surf. Coat. Technol. 421, 127444 (2021)

    Google Scholar 

  38. A. Gangwar, S. Kumar, S.S. Meena, A. Sharma, M.K. Viswanadh, K. Neogi, M.S. Muthu, N.K. Prasad, Structural and in-vitro assessment of ZnxFe3−xC (0 ≤ x ≤ 1) nanoparticles as magnetic biomaterials. Appl. Surf. Sci. 509, 144891 (2020)

    Google Scholar 

  39. G.D. Tsibidis, E. Skoulas, E. Stratakis, Ripple formation on nickel irradiated with radially polarized femtosecond beams. Opt. Lett. 40, 5172–5175 (2015)

    ADS  PubMed  Google Scholar 

  40. P. Cheng, T. Ye, H. Zeng, J. Ding, Raman spectra investigation on the pressure-induced phase transition in titanium nitride (TiN). AIP Adv. 10, 045110 (2020)

    ADS  Google Scholar 

  41. H. F. Li, F. L. Nie, Y. F. Zheng, Y. Cheng, S. C. Wei, R. Z. Valiev, Nanocrystalline Ti49.2Ni50.8 shape memory alloy as orthopaedic implant material with better performance. J Mater Sci Technol 35, 2156–2162 (2019).

  42. J. Lin, B. Mishra, J.J. Moore, W.D. Sproul, A study of the oxidation behavior of CrN and CrAlN thin films in air using DSC and TGA analyses. Surf. Coat. Technol. 202, 3272–3283 (2008)

    Google Scholar 

  43. S. Takeda, M. Fukawa, Y. Hayashi, K. Matsumoto, Surface OH group governing adsorption properties of metal oxide films. Thin Solid Films 339, 220–224 (1999)

    ADS  Google Scholar 

  44. A. Samanta, Q. Wang, S.K. Shaw, H. Ding, Roles of chemistry modification for laser textured metal alloys to achieve extreme surface wetting behaviors. Mater. Des. 192, 108744 (2020)

    Google Scholar 

  45. Y. Dong, P. Li, C.B. Chen, Z.H. Wang, P. Ma, G.Q. Chen, The improvement of fibroblast growth on hydrophobic biopolyesters by coating with polyhydroxyalkanoate granule binding protein PhaP fused with cell adhesion motif RGD. Biomaterials 31, 8921–8930 (2010)

    PubMed  Google Scholar 

  46. S.M. Pimenov, E.V. Zavedeev, N.R. Arutyunyan, M.Y. Presniakov, O.S. Zilova, M.L. Shupegin, B. Jaeggi, B. Neuenschwander, Femtosecond-laser-ablation induced transformations in the structure and surface properties of diamond-like nanocomposite films. Appl. Surf. Sci. 509, 144907 (2020)

    Google Scholar 

  47. K. Alam, M.B. Haider, M.F. Al-Kuhaili, K.A. Ziq, B.U. Haq, Electronic phase transition in CrN thin films grown by reactive RF magnetron sputtering. Ceram. Int. 48, 17352–17358 (2022)

    Google Scholar 

  48. M. Liu, Z. Yang, L. Dong, Z. Wang, S. Wang, L. Wang, Y. Xie, Q. Zhang, Z. Weng, Y. Tian, Vacuum conditions for tunable wettability transition on laser ablated Ti-6Al-4V alloy surfaces. Colloids Surf A Physicochem Eng Asp 647, 129023 (2022)

    Google Scholar 

  49. I. Ghemras, L. Montes, C.L. Santos, A.R. González-Elipe, V. Rico, Exalted dual-scale surface roughening in laser ablated aluminum capped with a transparent thin film: Wetting and anti-icing behavior. Appl. Surf. Sci. 630, 157357 (2023)

    Google Scholar 

  50. L.Å. Näslund, I. Persson, XPS spectra curve fittings of Ti3C2Tx based on first principles thinking. Appl. Surf. Sci. 593, 153442 (2022)

    Google Scholar 

  51. W. Huang, B. Anvari, J.H. Torres, R.G. LeBaron, K.A. Athanasiou, Temporal effects of cell adhesion on mechanical characteristics of the single chondrocyte. J. Orthop. Res. 21, 88–95 (2003)

    PubMed  Google Scholar 

  52. M. Polak, K. Berniak, P.K. Szewczyk, J.E. Karbowniczek, M.M. Marzec, U. Stachewicz, PLLA scaffolds with controlled surface potential and piezoelectricity for enhancing cell adhesion in tissue engineering. Appl. Surf. Sci. 621, 156835 (2023)

    Google Scholar 

  53. Y. Wang, L. Chen, R. Hou, L. Bai, S. Guan, Rapamycin-loaded nanocoating to specially modulate smooth muscle cells on ZE21B alloy for vascular stent application. Appl. Surf. Sci. 615, 156410 (2023)

    Google Scholar 

  54. H. Yilmazer, M. Şenc, M. Niinomi, M. Nakai, L. Huihong, K. Cho, Y. Todaka, H. Shiku, T. Matsue, Developing biomedical nano-grained β-type titanium alloys using high pressure torsion for improved cell adherence. RSC Adv. 6, 7426–7430 (2016)

    ADS  Google Scholar 

  55. R. Olivares-Navarrete, S.E. Rodil, S.L. Hyzy, G.R. Dunn, A. Almaguer-Flores, Z. Schwartz, B.D. Boyan, Role of integrin subunits in mesenchymal stem cell differentiation and osteoblast maturation on graphitic carbon-coated microstructured surfaces. Biomaterials 51, 69–79 (2015)

    PubMed  PubMed Central  Google Scholar 

  56. C. Goldy, M. Caillaud, Connecting the plant cytoskeleton to the cell surface via the phosphoinositides. Curr. Opin. Plant Biol. 73, 102365 (2023)

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support by the National Science and Technology Council, Republic of China (Taiwan) under Grant Nos. 112-2622-E-003-002, 111-2221-E-003-008-MY3, 110-2222-E-038-004-MY2, and 109-2628-E-003 -001 -MY3.

Author information

Authors and Affiliations

Authors

Contributions

Q-XW: investigation, data curation, validation, visualization, and writing—review & editing; T-LC: methodology, conceptualization, validation, writing—review & editing, and funding acquisition; Z-CC: methodology, investigation, validation, writing—review & editing, and funding acquisition; W-TH: investigation, formal analysis, investigation, validation, and visualization; S-PH: investigation, data curation, investigation, validation, and visualization.

Corresponding authors

Correspondence to Tien-Li Chang or Zhao-Chi Chen.

Ethics declarations

Conflict of interest

The authors declare having no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, QX., Chang, TL., Chen, ZC. et al. Investigation of ultrafast laser surface patterning and nanocrystalline formation on CrTiN alloy films for enhanced cell proliferation. Appl. Phys. A 130, 161 (2024). https://doi.org/10.1007/s00339-023-07246-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-07246-0

Keywords

Navigation