Skip to main content
Log in

Improved electrochemical properties of nanostructured Bi0.9Gd0.1FeO3 thin film as electrode material for supercapacitors

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this study, researchers investigated the potential of nanostructured gadolinium-doped bismuth ferrite (Bi0.9Gd0.1FeO3) thin film as an electrode material for supercapacitors. The thin film was synthesized using the sol–gel method and deposited onto a Si/SiO2/TiO2/Pt substrate using spin coating. X-ray diffraction (XRD) measurements confirmed a rhombohedral distorted perovskite structure. Morphological analysis with SEM and AFM revealed the presence of nanorod-like structures, approximately 200 nm thick. FTIR spectroscopy confirmed the functional groups in the film. Through electrochemical measurements, including cyclic voltammetry (CV), galvanostatic charge and discharge (GCD), and electrochemical impedance spectroscopy (EIS), a significant specific capacitance of 812 F/g was observed, indicating promising supercapacitor performance through superficial faradic reactions. The findings suggest that gadolinium-doped bismuth ferrite thin films hold potential as effective electrode materials for supercapacitors when operating in a liquid environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the document. Raw data that supoort the findings of this study are available from the correaponding author, upon responsable request.

References

  1. F. Shi et al., Metal oxide/hydroxide-based materials for supercapacitors. RSC Adv. 4(79), 41910–41921 (2014)

    Article  ADS  CAS  Google Scholar 

  2. I. Shaheen, I. Hussain, T. Zahra, M.S. Javed, S.S.A. Shah, K. Khan, K. Zhang, Recent advancements in metal oxides for energy storage materials: design, classification, and electrodes configuration of supercapacitor. J Energy Storage. 72, 108719 (2023)

    Article  Google Scholar 

  3. M. Mustaqeem, G.A. Naikoo, M. Yarmohammadi, M.Z. Pedram, H. Pourfarzad, R.A. Dar, Y.F. Chen, Rational design of metal oxide-based electrode materials for high performance supercapacitors–a review. J Energy Storage 55, 105419 (2022)

    Article  Google Scholar 

  4. A. Kumar, H.K. Rathore, D. Sarkar, A. Shukla, Nanoarchitectured transition metal oxides and their composites for supercapacitors. Electrochem Sci Adv 2(6), e2100187 (2022)

    Article  CAS  Google Scholar 

  5. S. Wustoni, D. Ohayon, A. Hermawan, A. Nuruddin, S. Inal, Y.S. Indartono, B. Yuliarto, Material design and characterization of conducting polymer-based supercapacitors. Polym. Rev. (2023). https://doi.org/10.1080/15583724.2023.2220131

    Article  Google Scholar 

  6. M.I. Ul Hoque, R. Holze, Intrinsically conducting polymer composites as active masses in supercapacitors. Polymers 15(3), 730 (2023)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. R. Chandrashekhar, A.A. Yadav, Spray-deposited cobalt-doped RuO2 electrodes for high-performance supercapacitors. Electrochim. Acta 437, 141521 (2023)

    Article  Google Scholar 

  8. Q. Wang, M. Wang, J. Sun, X. Zhang, W. Chen, X. Yu, W. Fan, Different assembled nano-MnO2 fiber supercapacitors applied for smart wearable clothing. Text. Res. J. (2023). https://doi.org/10.1177/00405175231181088

    Article  Google Scholar 

  9. V.V. Jadhav, M.K. Zate, S. Liu, M. Naushad, R.S. Mane, K.N. Hui, S.H. Han, Mixed-phase bismuth ferrite nanoflake electrodes for supercapacitor application. Appl. Nanosci. 6(4), 511–519 (2016)

    Article  ADS  CAS  Google Scholar 

  10. Dutta, N., Bandyopadhyay, S. K., Rana, S., Sen, P., & Himanshu, A. K. (2013). Remarkably high value of capacitance in BiFeO3 Nanorod. arXiv preprint arXiv:1309.5690. Accessed 23 Sep 2013.

  11. P. Godara, A. Agarwal, N. Ahlawat, S. Sanghi, Crystal structure refinement, dielectric and magnetic properties of Sm modified BiFeO3 multiferroic. J. Mol. Struct. 1097, 207–213 (2015)

    Article  ADS  CAS  Google Scholar 

  12. V.A. Khomchenko, J.A. Paixao, V.V. Shvartsman, P. Borisov, W. Kleemann, D.V. Karpinsky, A.L. Kholkin, Effect of Sm substitution on ferroelectric and magnetic properties of BiFeO3. Scripta Mater. 62(5), 238–241 (2010)

    Article  CAS  Google Scholar 

  13. A. Mukherjee, S. Basu, P.K. Manna, S.M. Yusuf, M. Pal, Giant magnetodielectric and enhanced multiferroic properties of Sm doped bismuth ferrite nanoparticles. J Mater Chem C 2(29), 5885–5891 (2014)

    Article  CAS  Google Scholar 

  14. T. Sindhu, A.T. Ravichandran, A.R. Xavier, M. Kumaresavanji, Structural, surface morphological and magnetic properties of Gd-doped BiFeO3 nanomaterials synthesised by EA chelated solution combustion method. Appl. Phys. A 129(10), 685 (2023)

    Article  ADS  CAS  Google Scholar 

  15. P. Kumar, P. Chand, Structural, electric transport response and electro-strain-polarization effect in La and Ni modified bismuth ferrite nanostructures. J. Alloy. Compd. 748, 504–514 (2018)

    Article  CAS  Google Scholar 

  16. P. Veluswamy, S. Sathiyamoorthy, P. Santhoshkumar, G. Karunakaran, C.W. Lee, D. Kuznetsov, H. Ikeda, Sono-synthesis approach of reduced graphene oxide for ammonia vapour detection at room temperature. Ultrasonicssonochemistry 48, 555–566 (2018)

    CAS  Google Scholar 

  17. C. Anthonyraj, M. Muneeswaran, S.G. Raj, N.V. Giridharan, V. Sivakumar, G. Senguttuvan, Effect of samarium doping on the structural, optical and magnetic properties of sol–gel processed BiFeO 3 thin films. J. Mater. Sci. Mater. Electron. 26(1), 49–58 (2015)

    Article  CAS  Google Scholar 

  18. C.A. Kumar, G.G. Rao, K. Samatha, S. Bharadwaj, M.P. Dasari, Observation on magnetic variation for low concentration of bismuth and samarium doped Ni–Co ferrites. Karbala Int J Mod Sci 4(1), 143–150 (2018)

    Article  Google Scholar 

  19. H. Wu, P. Xue, Y. Lu, X. Zhu, Microstructural, optical and magnetic characterizations of BiFeO3 multiferroic nanoparticles synthesized via a sol-gel process. J. Alloy. Compd. 731, 471–477 (2018)

    Article  CAS  Google Scholar 

  20. R.A. Golda, A. Marikani, E.J. Alex, Enhancement of dielectric, ferromagnetic and electrochemical properties of BiFeO3 nanostructured films through rare earth metal doping. Ceram. Int. 46(2), 1962–1973 (2020)

    Article  Google Scholar 

  21. Andrzejewski, B., Chybczynska, K., Hilczer, B., Blaszyk, M., Lucinski, T., Matczak, M., &Kepinski, L. (2014). Controlled growth of bismuth ferrite multiferroic flowers. arXiv preprint arXiv:1402.1336. Accessed 6 Feb 2014

  22. A. Sarkar, A.K. Singh, D. Sarkar, G.G. Khan, K. Mandal, Three-dimensional nanoarchitecture of BiFeO3 anchored TiO2 nanotube arrays for electrochemical energy storage and solar energy conversion. ACS Sustain Chem Eng 3(9), 2254–2263 (2015)

    Article  CAS  Google Scholar 

  23. Z. Yin, Q. Zheng, S.C. Chen, D. Cai, L. Zhou, J. Zhang, BandgapTunable Zn1-xMgxO thin films as highly transparent cathode buffer layers for high-performance inverted polymer solar cells. Adv. Energy Mater. 4(7), 1301404 (2014)

    Article  Google Scholar 

  24. I.I. Suni, Impedance methods for electrochemical sensors using nanomaterials. TrAC, Trends Anal. Chem. 27(7), 604–611 (2008)

    Article  CAS  Google Scholar 

  25. H. Haromae, P. Pattananuwat, Preparation of bismuth ferrite as photo-supercapacitive electrode. IOP Conf Ser Mater Sci Eng. 600(1), 012005 (2019)

    Article  CAS  Google Scholar 

  26. S. Jo, S. Pak, Y.W. Lee, S. Cha, J. Hong, J.I. Sohn, Enhancing the electrochemical energy storage performance of bismuth ferrite supercapacitor electrodes via simply induced anion vacancies. Int. J. Energy Res. (2023). https://doi.org/10.1155/2023/2496447

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

EJA, BGM, and RAG: devised the project, the main conceptual ideas and proof outline. BGM and RAG carried out the experiments. BGM and RAG: wrote the manuscript with the support from EJA. EJA: contributed to the results interpretation and final version of the manuscript. All the authors provided official feedback and helped shape of the research, analysis and manuscript.

Corresponding author

Correspondence to R. Anlin Golda.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alex, E.J., Manju, B.G. & Golda, R.A. Improved electrochemical properties of nanostructured Bi0.9Gd0.1FeO3 thin film as electrode material for supercapacitors. Appl. Phys. A 130, 97 (2024). https://doi.org/10.1007/s00339-023-07226-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-07226-4

Keywords

Navigation