Skip to main content
Log in

Synthesis of cerium-doped magnesium spinel ferrites and study of their physical properties for photocatalytic applications under sunlight irradiation

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Magnesium spinel ferrite (MgFe2O4) and cerium-doped magnesium spinel ferrite (MgFe2-xCexO4) (x = 0.0, 0.05, 0.1) were synthesized using an inexpensive coprecipitation method. The investigation focused on the influence of cerium on the physicochemical properties and the photocatalytic activity of this material under sunlight irradiation. The various characterization techniques, including X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), environmental scanning electron microscopy (ESEM-EDX), the Brunauer–Emmett–Teller (BET) method, and vibrating sample magnetometer (VSM), were used to determine the structural, morphological, and magnetic properties of the prepared samples. The increase in cerium percentage was found to better agglomerate the sheet-like morphology formed in the pure spinel and increase the average crystallite size, with a decrease in the magnetic properties. The optical band gap measured by UV–visible spectroscopy decreased from 2.21 eV, 2.21 eV, and 2.36 eV, accompanied by a change in the specific surface area of 47.23 m2/g, 57.86 m2/g, and 47.25 m2/g for MgFe2O4, MgFe1.95Ce0.05O4, and MgFe1.90Ce0.1O4, respectively. The maximum photocatalytic degradation of methylene blue under sunlight irradiation was achieved for the MgFe1.95Ce0.05O4 (58.35%) in the absence of hydrogen peroxide, and the maximum degradation for Fenton-like processes was achieved in the presence of MgFe1.90Ce0.1O4 (91.05%) within 180 min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author Hebbaz Abdennour.

References

  1. M.M. Vopson, Fundamentals of multiferroic materials and their possible applications. Crit. Rev. Solid State Mater. Sci. 40(4), 223–250 (2015). https://doi.org/10.1080/10408436.2014.992584

    Article  ADS  CAS  Google Scholar 

  2. A. Sasmal, A.K. Nayak, Morphology-dependent solvothermal synthesis of spinel NiCo2O4 nanostructures for enhanced energy storage device application. J. Energy Storage 58, 106342 (2023). https://doi.org/10.1016/j.est.2022.106342

    Article  Google Scholar 

  3. Q. Mahmood et al., Room temperature ferromagnetism and thermoelectric behavior of calcium based spinel chalcogenides CaZ2S4 (Z = Ti, V, Cr, Fe) for spintronic applications. J. Phys. Chem. Solids 167, 110742 (2022). https://doi.org/10.1016/j.jpcs.2022.110742

    Article  CAS  Google Scholar 

  4. P.L. Mahapatra, S. Das, N.A. Keasberry, S.B. Ibrahim, D. Saha, Copper ferrite inverse spinel-based highly sensitive and selective chemiresistive gas sensor for the detection of formalin adulteration in fish. J. Alloys Compd. 960, 170792 (2023). https://doi.org/10.1016/j.jallcom.2023.170792

    Article  CAS  Google Scholar 

  5. A. Manikandan, M. Durka, K. Seevakan, S.A. Antony, A Novel One-Pot Combustion Synthesis and Opto-magnetic Properties of Magnetically Separable Spinel Mn x Mg 1–x Fe2 O 4(0.0 ≤ x ≤ 0.5) Nanophotocatalysts. J. Supercond. Magn. 28(4), 1405–1416 (2015). https://doi.org/10.1007/s10948-014-2864-x

    Article  CAS  Google Scholar 

  6. A. Manohar et al., Investigation on the physico-chemical properties, hyperthermia and cytotoxicity study of magnesium doped manganese ferrite nanoparticles. Mater. Chem. Phys. 287, 126295 (2022). https://doi.org/10.1016/j.matchemphys.2022.126295

    Article  CAS  Google Scholar 

  7. K.M. Batoo et al., Improved microwave absorption and EMI shielding properties of Ba-doped Co–Zn ferrite. Ceram. Int. 48(3), 3328–3343 (2022). https://doi.org/10.1016/j.ceramint.2021.10.108

    Article  CAS  Google Scholar 

  8. V.K. Chakradhary, A. Ansari, M.J. Akhtar, Design, synthesis, and testing of high coercivity cobalt doped nickel ferrite nanoparticles for magnetic applications. J. Magn. Magn. Mater. 469, 674–680 (2019). https://doi.org/10.1016/j.jmmm.2018.09.021

    Article  ADS  CAS  Google Scholar 

  9. Y. Slimani et al., Calcination effect on the magneto-optical properties of vanadium substituted NiFe2O4 nanoferrites. J. Mater. Sci. Mater. Electron. 30(10), 9143–9154 (2019). https://doi.org/10.1007/s10854-019-01243-x

    Article  CAS  Google Scholar 

  10. S. K. Sharma, Ed., Spinel Nanoferrites: Synthesis, Properties and Applications. in Topics in Mining, Metallurgy and Materials Engineering. Cham: Springer International Publishing, 2021. doi: https://doi.org/10.1007/978-3-030-79960-1.

  11. Q. Chen, A.J. Rondinone, B.C. Chakoumakos, Z.J. Zhang, Synthesis of superparamagnetic MgFe2O4 nanoparticles by coprecipitation. J. Magn. Magn. Mater. 194(1–3), 1–7 (1999)

    Article  ADS  CAS  Google Scholar 

  12. J. Kurian, M.J. Mathew, Structural, optical and magnetic studies of CuFe2O4, MgFe2O4 and ZnFe2O4 nanoparticles prepared by hydrothermal/solvothermal method. J. Magn. Magn. Mater. 451, 121–130 (2018). https://doi.org/10.1016/j.jmmm.2017.10.124

    Article  ADS  CAS  Google Scholar 

  13. Y. Ichiyanagi, M. Kubota, S. Moritake, Y. Kanazawa, T. Yamada, T. Uehashi, Magnetic properties of Mg-ferrite nanoparticles. J. Magn. Magn. Mater. 310(2), 2378–2380 (2007). https://doi.org/10.1016/j.jmmm.2006.10.737

    Article  ADS  CAS  Google Scholar 

  14. K. Mukherjee, D.C. Bharti, S.B. Majumder, Solution synthesis and kinetic analyses of the gas sensing characteristics of magnesium ferrite particles. Sens. Actuators B Chem. 146(1), 91–97 (2010). https://doi.org/10.1016/j.snb.2010.02.020

    Article  CAS  Google Scholar 

  15. N. Sivakumar et al., Nanostructured MgFe2O4 as anode materials for lithium-ion batteries. J. Alloys Compd. 509(25), 7038–7041 (2011). https://doi.org/10.1016/j.jallcom.2011.03.123

    Article  CAS  Google Scholar 

  16. J.M. Poyatos, M.M. Muñio, M.C. Almecija, J.C. Torres, E. Hontoria, F. Osorio, Advanced oxidation processes for wastewater treatment: state of the art. Water Air Soil Pollut. 205(1–4), 187–204 (2010). https://doi.org/10.1007/s11270-009-0065-1

    Article  ADS  CAS  Google Scholar 

  17. J.-M. Herrmann, C. Guillard, P. Pichat, Heterogeneous photocatalysis : an emerging technology for water treatment. Catal. Today 17(1–2), 7–20 (1993). https://doi.org/10.1016/0920-5861(93)80003-J

    Article  CAS  Google Scholar 

  18. L. Zhao et al., Synthesis, characterization and adsorptive performance of MgFe2O4 nanospheres for SO2 removal. J. Hazard. Mater. 184(1–3), 704–709 (2010). https://doi.org/10.1016/j.jhazmat.2010.08.096

    Article  PubMed  CAS  Google Scholar 

  19. M. Israr, J. Iqbal, A. Arshad, P. Gómez-Romero, R. Benages, Multifunctional MgFe2O4/GNPs nanocomposite: graphene-promoted visible light driven photocatalytic activity and electrochemical performance of MgFe2O4 nanoparticles. Solid State Sci. 110, 106363 (2020). https://doi.org/10.1016/j.solidstatesciences.2020.106363

    Article  CAS  Google Scholar 

  20. L. Lu, J. Li, J. Yu, P. Song, D.H.L. Ng, A hierarchically porous MgFe2O4/γ-Fe2O3 magnetic microspheres for efficient removals of dye and pharmaceutical from water. Chem. Eng. J. 283, 524–534 (2016). https://doi.org/10.1016/j.cej.2015.07.081

    Article  CAS  Google Scholar 

  21. A. F. Cabrera, C. E. Rodríguez Torres, S. G. Marchetti, and S. J. Stewart, “Degradation of methylene blue dye under dark and visible light conditions in presence of hybrid composites of nanostructured MgFe2O4 ferrites and oxygenated organic compounds,” J. Environ. Chem. Eng., vol. 8, no. 5, p. 104274, 2020, doi: https://doi.org/10.1016/j.jece.2020.104274.

  22. T.A. Nguyen, R.-S. Juang, Treatment of waters and wastewaters containing sulfur dyes: a review. Chem. Eng. J. 219, 109–117 (2013). https://doi.org/10.1016/j.cej.2012.12.102

    Article  CAS  Google Scholar 

  23. T. Platzek, Overview on toxicity and exposure to azo dyes and aromatic amines. Toxicol. Lett. 221, S53 (2013). https://doi.org/10.1016/j.toxlet.2013.06.193

    Article  Google Scholar 

  24. S. Haider, S.S. Shar, I. Shakir, P.O. Agboola, Visible light active Cu-doped iron oxide for photocatalytic treatment of methylene blue. Ceram. Int. 48(6), 7605–7612 (2022). https://doi.org/10.1016/j.ceramint.2021.11.304

    Article  CAS  Google Scholar 

  25. W.S. Kuo, P.H. Ho, Solar photocatalytic decolorization of methylene blue in water. Chemosphere 45(1), 77–83 (2001). https://doi.org/10.1016/S0045-6535(01)00008-X

    Article  PubMed  ADS  CAS  Google Scholar 

  26. M. Rojas-Cervantes, E. Castillejos, Perovskites as catalysts in advanced oxidation processes for wastewater treatment. Catalysts 9(3), 230 (2019). https://doi.org/10.3390/catal9030230

    Article  CAS  Google Scholar 

  27. B. Elvers, G. Bellussi (eds.), Ullmann’s encyclopedia of industrial chemistry, 7th, completely rev, ed. (Wiley, Weinheim, 2011)

    Google Scholar 

  28. S.N.E. Hassan, T.M. Hussein, M. El, Eldeeb, “Photodynamic therapy using methylene blue and intense pulsed light versus intense pulsed light alone in treatment of verruca: a randomized controlled study.” Photodiagnosis Photodyn. Ther. 36, 102541 (2021). https://doi.org/10.1016/j.pdpdt.2021.102541

    Article  PubMed  CAS  Google Scholar 

  29. P. Rajasulochana, V. Preethy, Comparison on efficiency of various techniques in treatment of waste and sewage water – A comprehensive review. Resour.-Effic. Technol. 2(4), 175–184 (2016). https://doi.org/10.1016/j.reffit.2016.09.004

    Article  Google Scholar 

  30. T. Baysal, N. Noor, A. Demir, Nanofibrous MgO composites: structures, properties, and applications. Polym.-Plast. Technol. Mater. 59(14), 1522–1551 (2020). https://doi.org/10.1080/25740881.2020.1759212

    Article  CAS  Google Scholar 

  31. A. Goktas, S. Modanlı, A. Tumbul, A. Kilic, Facile synthesis and characterization of ZnO, ZnO:Co, and ZnO/ZnO: Co nano rod-like homojunction thin films: Role of crystallite/grain size and microstrain in photocatalytic performance. J. Alloys Compd. 893, 162334 (2022). https://doi.org/10.1016/j.jallcom.2021.162334

    Article  CAS  Google Scholar 

  32. D.A. Salinas, C.L. Marchena, L.B. Pierella, G. Pecchi, Catalytic oxidation of 2-(methylthio)-benzothiazole on alkaline earth titanates, ATiO3 (A = Ca, Sr, Ba). Mol. Catal. 438, 76–85 (2017). https://doi.org/10.1016/j.mcat.2017.05.019

    Article  CAS  Google Scholar 

  33. L. Mi et al., Synthesis of BaTiO3 nanoparticles by sol-gel assisted solid phase method and its formation mechanism and photocatalytic activity. Ceram. Int. 46(8), 10619–10633 (2020). https://doi.org/10.1016/j.ceramint.2020.01.066

    Article  CAS  Google Scholar 

  34. K. Shetty et al., A comparative study on CuFe 2 O 4, ZnFe 2 O 4 and NiFe 2 O 4: morphology, Impedance and Photocatalytic studies. Mater. Today Proc. 4(11), 11806–11815 (2017). https://doi.org/10.1016/j.matpr.2017.09.098

    Article  Google Scholar 

  35. A. Charles et al., Facile synthesis of CaFe2O4 for visible light driven treatment of polluting palm oil mill effluent: photokinetic and scavenging study. Sci. Total. Environ. 661, 522–530 (2019). https://doi.org/10.1016/j.scitotenv.2019.01.195

    Article  PubMed  ADS  CAS  Google Scholar 

  36. M. George et al., Evaluation of Cu–MgFe2O4 spinel nanoparticles for photocatalytic and antimicrobial activates. J. Phys. Chem. Solids 153, 110010 (2021). https://doi.org/10.1016/j.jpcs.2021.110010

    Article  CAS  Google Scholar 

  37. T. Wu, G. Shen, F. Ding, D. Li, H. Zhong, Effects of La3+ doping on the structure, properties and application of Mn–Zn ferrite. Mater. Chem. Phys. 252, 123328 (2020). https://doi.org/10.1016/j.matchemphys.2020.123328

    Article  CAS  Google Scholar 

  38. S.P. Keerthana, R. Yuvakkumar, P.S. Kumar, G. Ravi, D. Velauthapillai, Rare earth metal (Sm) doped zinc ferrite (ZnFe2O4) for improved photocatalytic elimination of toxic dye from aquatic system. Environ. Res. 197, 111047 (2021). https://doi.org/10.1016/j.envres.2021.111047

    Article  PubMed  CAS  Google Scholar 

  39. M. Dhiman, B. Chudasama, V. Kumar, K.B. Tikoo, S. Singhal, Augmenting the photocatalytic performance of cobalt ferrite via change in structural and optical properties with the introduction of different rare earth metal ions. Ceram. Int. 45(3), 3698–3709 (2019). https://doi.org/10.1016/j.ceramint.2018.11.033

    Article  CAS  Google Scholar 

  40. K. Elayakumar et al., Enhanced magnetic property and antibacterial biomedical activity of Ce3+ doped CuFe2O4 spinel nanoparticles synthesized by sol-gel method. J. Magn. Magn. Mater. 478, 140–147 (2019). https://doi.org/10.1016/j.jmmm.2019.01.108

    Article  ADS  CAS  Google Scholar 

  41. J. Hou et al., One-pot hydrothermal synthesis of CdS–CuS decorated TiO2 NTs for improved photocatalytic dye degradation and hydrogen production. Ceram. Int. 47(21), 30860–30868 (2021). https://doi.org/10.1016/j.ceramint.2021.07.268

    Article  CAS  Google Scholar 

  42. K. Shetty et al., Designing MgFe2O4 decorated on green mediated reduced graphene oxide sheets showing photocatalytic performance and luminescence property. Phys. B Condens. Matter 507, 67–75 (2017). https://doi.org/10.1016/j.physb.2016.11.021

    Article  ADS  CAS  Google Scholar 

  43. J.Y. Patil, D.Y. Nadargi, I.S. Mulla, S.S. Suryavanshi, Cerium doped MgFe2O4 nanocomposites: highly sensitive and fast response-recoverable acetone gas sensor. Heliyon 5(6), e01489 (2019). https://doi.org/10.1016/j.heliyon.2019.e01489

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. T. Zhou et al., Efficient degradation of rhodamine B with magnetically separable Ag3PO4@MgFe2O4 composites under visible irradiation. J. Alloys Compd. 735, 1277–1290 (2018). https://doi.org/10.1016/j.jallcom.2017.11.245

    Article  CAS  Google Scholar 

  45. Y. Liu, J. Wang, Multivalent metal catalysts in Fenton/Fenton-like oxidation system: a critical review. Chem. Eng. J. 466, 143147 (2023). https://doi.org/10.1016/j.cej.2023.143147

    Article  CAS  Google Scholar 

  46. L. Sharma, R. Kakkar, Magnetically retrievable one-pot fabrication of mesoporous magnesium ferrite (MgFe2O4) for the remediation of chlorpyrifos and real pesticide wastewater. J. Environ. Chem. Eng. 6(6), 6891–6903 (2018). https://doi.org/10.1016/j.jece.2018.10.058

    Article  CAS  Google Scholar 

  47. F. Andish-Lifshagerd, A. Habibi-Yangjeh, M. Habibi, Y. Akinay, Facile synthesis of ZnO/CeO2/CeFeO3 photocatalysts sensitive to visible light with tandem n-n heterojunctions and improved performance towards tetracycline and dye effluent removals. J. Photochem. Photobiol. Chem. 448, 115351 (2024). https://doi.org/10.1016/j.jphotochem.2023.115351

    Article  CAS  Google Scholar 

  48. S. Dadras, S. Falahati, S. Dehghani, Effects of graphene oxide doping on the structural and superconducting properties of YBa2Cu3O7−δ. Phys. C Supercond. Appl. 548, 65–67 (2018). https://doi.org/10.1016/j.physc.2018.02.010

    Article  ADS  CAS  Google Scholar 

  49. S. Gaba, A. Kumar, P.S. Rana, Influence of Ce3+ ion doping on structural and magnetic properties of magnesium nanoferrite. J. Supercond. Magn. 32(5), 1465–1474 (2019). https://doi.org/10.1007/s10948-018-4846-x

    Article  CAS  Google Scholar 

  50. T. Kousar et al., Wet-chemical synthesis of nanostructured Ce-doped mixed metal ferrites for the effective removal of azo dyes from industrial discharges. Ceram. Int. 48(8), 11858–11868 (2022). https://doi.org/10.1016/j.ceramint.2022.01.057

    Article  CAS  Google Scholar 

  51. S. Patil et al., Magnetic Eu-doped MgFe2O4 nanomaterials: an investigation of their structural, optical and enhanced visible-light-driven photocatalytic performance. Environ. Nanotechnol. Monit. Manag. 13, 100268 (2020). https://doi.org/10.1016/j.enmm.2019.100268

    Article  Google Scholar 

  52. D. Alhashmialameer et al., Copper-doped magnesium ferrite and its composite with rGO: synthesis, characterization, and degradation of organic effluents and antibacterial study. Ceram. Int. 48(16), 24100–24113 (2022). https://doi.org/10.1016/j.ceramint.2022.05.373

    Article  CAS  Google Scholar 

  53. J.B. Condon, Surface area and porosity determinations by physisorption: measurements and theory, 1st edn. (Elsevier, Amsterdam; Boston, 2006)

    Google Scholar 

  54. Z. Hammache, A. Soukeur, S. Omeiri, B. Bellal, M. Trari, Physical and photo-electrochemical properties of MgFe2O4 prepared by sol gel route: application to the photodegradation of methylene blue. J. Mater. Sci. Mater. Electron. 30(6), 5375–5382 (2019). https://doi.org/10.1007/s10854-019-00830-2

    Article  CAS  Google Scholar 

  55. I.A. Parray, A. Somvanshi, S.A. Ali, Study of microstructural, ferroelectric and magnetic properties of cerium substituted magnesium ferrite and its potential application as hydroelectric cell. Ceram. Int. 49(4), 6946–6957 (2023). https://doi.org/10.1016/j.ceramint.2022.10.223

    Article  CAS  Google Scholar 

  56. A. Sundaresan, R. Bhargavi, N. Rangarajan, U. Siddesh, C.N.R. Rao, Ferromagnetism as a universal feature of nanoparticles of the otherwise nonmagnetic oxides. Phys. Rev. B 74(16), 161306 (2006). https://doi.org/10.1103/PhysRevB.74.161306

    Article  ADS  CAS  Google Scholar 

  57. Y. Liu, Z. Lockman, A. Aziz, J. MacManus-Driscoll, Size dependent ferromagnetism in cerium oxide (CeO 2) nanostructures independent of oxygen vacancies. J. Phys. Condens. Matter 20(16), 165201 (2008). https://doi.org/10.1088/0953-8984/20/16/165201

    Article  ADS  CAS  Google Scholar 

  58. C. Sedrati, S. Alleg, H. Boussafel, and A. Bendali Hacine, “Structure and magnetic properties of nickel ferrites synthesized by a facile co-precipitation method: effect of the Fe/Ni ratio,” J. Mater. Sci. Mater. Electron., vol. 32, no. 19, pp. 24548–24559, 2021, doi: https://doi.org/10.1007/s10854-021-06932-0.

  59. M. Fallot, Ferromagnétisme des alliages de fer. Ann. Phys. 11(6), 305–387 (1936). https://doi.org/10.1051/anphys/193611060305

    Article  Google Scholar 

  60. Y. Liu, D. Shindō, and D. J. Sellmyer, Eds., Handbook of advanced magnetic materials. New York : [Beijing]: Springer ; Tsinghua University Press, 2006.

  61. A. Ivanets et al., Effect of metal ions adsorption on the efficiency of methylene blue degradation onto MgFe2O4 as Fenton-like catalysts. Colloids Surf. Physicochem. Eng. Asp. 571, 17–26 (2019). https://doi.org/10.1016/j.colsurfa.2019.03.071

    Article  CAS  Google Scholar 

  62. A. Manohar, V. Vijayakanth, M.R. Pallavolu, K.H. Kim, Effects of Ni - substitution on structural, magnetic hyperthermia, photocatalytic and cytotoxicity study of MgFe2O4 nanoparticles. J. Alloys Compd. 879, 160515 (2021). https://doi.org/10.1016/j.jallcom.2021.160515

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed to the study conception and design. Investigation, visualization, project administration, and writing were performed by Hebbaz Abdennour. Investigation, visualization, project administration, and correcting were performed by Belhani Mehdi. Review, and supervision were performed by Tahraoui Tarek. The first draft of the manuscript was written by Hebbaz Abdennour. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Abdennour Hebbaz.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose. The authors have no competing interests to declare that are relevant to the content of this article. All the authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript. The authors have no financial or proprietary interests in any material discussed in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hebbaz, A., Belhani, M. & Tahraoui, T. Synthesis of cerium-doped magnesium spinel ferrites and study of their physical properties for photocatalytic applications under sunlight irradiation. Appl. Phys. A 130, 94 (2024). https://doi.org/10.1007/s00339-023-07219-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-07219-3

Keywords

Navigation