Skip to main content
Log in

Scribing of surface-braided CFRP with picosecond laser: Thermal damage formation and removal mechanism analysis

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In the pursuit of mitigating or eradicating thermal damage defects during laser processing of carbon fiber-reinforced polymers (CFRP), the application of picosecond lasers with ultra-short pulse durations has emerged as a promising approach. Despite the adoption of picosecond lasers, the occurrence of thermal damage defects in CFRP processing persists. As a result, a more comprehensive comprehension of the mechanisms behind thermal damage formation and material removal in picosecond laser processing of CFRP is imperative. This study utilizes a picosecond laser at a wavelength of 532 nm to scribe the surface of braided CFRP. The focus is primarily on analyzing the mechanisms of thermal damage formation and material removal. Specifically, the effects of single-pulse energy density, line energy, and number of pulses in the spot range controlled by the process parameters on thermal damage and dimensional characteristics of the groove are evaluated. The results indicate that ablation, combustion and mechanical effects are the main forms of CFRP removal. Simultaneously, the groove also presents typical thermal damage defects as carbon fiber pull-out, heat-affected zone (HAZ), cracks, etc.. Furthermore, this study introduces a pioneering theoretical analysis of the effects of process parameter variations on effective thermal efficiency and the evolution of surface HAZ. This study contributes to the enhancement of the control capabilities against thermal damage in picosecond laser processing of CFRP, offering a crucial theoretical framework for further advancements in this domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. A. Salama, Y. Yan, L. Li, P. Mativenga, D. Whitehead, A. Sabli, Mater. Des. 107, 461 (2016)

    Article  Google Scholar 

  2. W. Zhao, T. Ma, H. Song, W. Yuan, R. Wang, Z. Wang, L. Lu, C. Huang, J. Mater. Res. Technol. 14, 1985 (2021)

    Article  CAS  Google Scholar 

  3. L. Chen, M. Li, X. Yang, Opt. Laser Technol. 149, 107794 (2022)

    Article  CAS  Google Scholar 

  4. W. Ouyang, J. Jiao, Z. Xu, H. Xia, Y. Ye, Q. Zou, R. Tian, L. Sheng, Opt. Laser Technol. 142, 107238 (2021)

    Article  CAS  Google Scholar 

  5. N. Tao, G. Chen, L. Fan, B. Wang, M. Li, W. Fang, Opt. Laser Technol. 144, 107445 (2021)

    Article  CAS  Google Scholar 

  6. H. Li, Y. Ye, T. Du, Y. Zhao, X. Ren, Y. Hua, Opt. Laser Technol. 153, 108219 (2022)

    Article  CAS  Google Scholar 

  7. A. Alberdi, T. Artaza, A. Suárez, A. Rivero, F. Girot, Int. J. Adv. Manuf. Technol. 86, 691 (2016)

    Article  Google Scholar 

  8. P. Wang, Z. Zhang, D. Liu, W. Qiu, Y. Zhang, G. Zhang, Opt. Laser Technol. 151, 108022 (2022)

    Article  CAS  Google Scholar 

  9. S. Habib, A. Okada, Mach. Sci. Technol. 20, 99 (2016)

    Article  CAS  Google Scholar 

  10. M. Li, S. Li, X. Yang, Y. Zhang, Z. Liang, Opt. Laser Technol. 107, 443 (2018)

    Article  ADS  CAS  Google Scholar 

  11. Y. Li, X. Zhan, C. Gao, H. Wang, Y. Yang, Int. J. Adv. Manuf. Technol. 102, 4059 (2019)

    Article  Google Scholar 

  12. C. Leone, I. Papa, F. Tagliaferri, V. Lopresto, Compos. Part A-Appl. Sci. 55, 129 (2013)

    Article  CAS  Google Scholar 

  13. A. Salama, L. Li, P. Mativenga, A. Sabli, Appl. Phys. A-Mater. 122 (2016)

  14. V. Oliveira, S.P. Sharma, M.F.S.F. de Moura, R.D.F. Moreira, R. Vilar, Opt. Lasers Eng. 94, 37 (2017)

    Article  Google Scholar 

  15. C. Leone, S. Genna, Compos. Part B-Eng. 140, 174 (2018)

    Article  Google Scholar 

  16. W. Li, Y. Huang, X. Chen, G. Zhang, Y. Rong, Y. Lu, Opt. Laser Technol. 144, 107400 (2021)

    Article  CAS  Google Scholar 

  17. A. Wolynski, T. Herrmann, P. Mucha, H. Haloui, J.L. Huillier, Phys. Procedia 12, 292 (2011)

    Article  ADS  CAS  Google Scholar 

  18. J. Finger, M. Weinand, D. Wortmann, J. Laser Appl. 25 (2013)

  19. C. Freitag, M. Wiedenmann, J. Negel, A. Loescher, V. Onuseit, R. Weber, M. Abdou Ahmed, T. Graf, Appl. Phys. A-Mater. 119, 1237 (2015)

    Article  ADS  CAS  Google Scholar 

  20. J. Hu, D. Zhu, J. Reinf. Plast. Compos. 37, 993 (2018)

    Article  CAS  Google Scholar 

  21. T.V. Kononenko, C. Freitag, M.S. Komlenok, V. Onuseit, R. Weber, T. Graf, V.I. Konov, J. Appl. Phys. 115, 103107 (2014)

    Article  ADS  Google Scholar 

  22. X. Li, W. Hou, B. Han, L. Xu, Z. Li, P. Nan, X. Ni, Surf. Interfaces 23, 101032 (2021)

    Article  CAS  Google Scholar 

  23. J. Li, Y. Ding, C. Ge, X. Sun, L. Yang, Y. Wang, W. Zhang, Y. Lu, J. Manuf. Process. 101, 854 (2023)

    Article  Google Scholar 

  24. M. Li, L. Chen, X. Yang, Opt. Laser Technol. 138, 106889 (2021)

    Article  CAS  Google Scholar 

  25. S. Oh, I. Lee, Y. Park, H. Ki, Opt. Laser Technol. 113, 129 (2019)

    Article  ADS  CAS  Google Scholar 

  26. D. Kalyanasundaram, S. Gururaja, P. Prabhune, D. Singh, Compos. Part A-Appl. Sci. 111, 33 (2018)

    Article  Google Scholar 

  27. T. Ohkubo, Y. Sato, E. Matsunaga, M. Tsukamoto, Appl. Surf. Sci. 417, 104 (2017)

    Article  ADS  CAS  Google Scholar 

  28. Y. Sato, M. Tsukamoto, F. Matsuoka, T. Ohkubo, N. Abe, Appl. Surf. Sci. 417, 250 (2017)

    Article  ADS  CAS  Google Scholar 

  29. D. Holder, M. Buser, S. Boley, R. Weber, T. Graf, Mater. Des. 203, 109567 (2021)

    Article  CAS  Google Scholar 

  30. T.H. Loutas, G. Sotiriadis, E. Tsonos, S. Psarras, V. Kostopoulos, Int. J. Adhes. Adhes. 95, 102407 (2019)

    Article  Google Scholar 

  31. J. Hu, H. Xu, J. Compos. Mater. 50, 2861 (2016)

    Article  ADS  CAS  Google Scholar 

  32. H. Xu, J. Hu, Appl. Math. Model. 46, 354 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported and funded by Guangxi Science and Technology Base and Talent Project (Guike AD21238020), Guangxi Natural Science Foundation (2021GXNSFBA075031), the National Natural Science Foundation of China (NSFC) (62274045, 62004050, 52165056), Guangxi Key Laboratory of Manufacturing Systems and Advanced Manufacturing Technology (17-259-05-018Z), Guangxi Young Teacher Education Project (2020KY05020), the Innovation Project of Guangxi Graduate Education (YCSW2022287, YCBZ2022114, YCBZ2021073), the GUET Excellent Graduate Thesis Program (19YJPYBS02), the Innovation Project of GUET Graduate Education (2020YCXS010, 2021YCXS001), the project of improving the basic research ability of young and middle-aged teachers in Guangxi universities (2022KY0201, 2022KY0178).

Author information

Authors and Affiliations

Authors

Contributions

HJ: Investigation, formal analysis, writing—original draft; ZL: investigation, data curation; GZ: investigation, data curation; JZ: writing—review and editing, project administration; YH: writing—review and editing, project administration; YL: writing—review and editing, project administration, funding acquisition.

Corresponding authors

Correspondence to Jia Zhou, Yuxing Huang or Yuhong Long.

Ethics declarations

Conflict of interest

The author declares that there is no any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiao, H., Lin, Z., Zhang, G. et al. Scribing of surface-braided CFRP with picosecond laser: Thermal damage formation and removal mechanism analysis. Appl. Phys. A 130, 120 (2024). https://doi.org/10.1007/s00339-023-07216-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-07216-6

Keywords

Navigation