Skip to main content
Log in

Cu2SrSnS4 absorber based efficient heterostructure single junction solar cell: a hybrid-DFT and macroscopic simulation studies

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The Quaternary Chalcogenide material Cu2ZnSn(S,Se)4 showed all the optimum material properties suitable for photovoltaic application. Yet, the current development has slowed down due to band-tailing issues and challenges to overcome. It causes the potential fluctuation for conduction band minima and valence band maxima. We introduced large ionic radii Sr in place of Zn to address the band tailing issue and demonstrated that Cu2SrSnS4 (CSTS) material is a promising alternative of Cu2ZnSn(S,Se)4 for solar cell application using a hybrid computational approach. The structural and optoelectronic properties of Cu2SrSnS4 are computed using the density functional approach. The direct bandgap of Cu2SrSnS4 of ~ 1.78 eV and significant absorption coefficient in the desired spectral range makes it a suitable absorber material for heterojunction solar cell. The computed materials properties are used to investigate the single junction photovoltaic device performance by introducing the realistic defect densities, recombination rate, electron affinity, and back electrode work function with two different buffer layers (CdS and ZnS). The devices, i.e., AZO/ZnO/CdS/CSTS/Mo and AZO/ZnO/ZnS/CSTS/Mo showed > 17.71% and > 20.12% photoconversion efficiency under optimized conditions. These devices exhibit nearly identical Jsc, whereas the device with ZnS buffer layer showed relatively larger Voc. Further, graphene as the ETL layer is evaluated and showed possible alternative to the conventional AZnO/ZO layers. This study shows the potential of Cu2SrSnS4 (CSTS) for an alternative absorber-based single heterojunction photovoltaic device with a large efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

The data used in the present work is provided in the manuscript.

References

  1. K. Kaur, N. Kumar, M. Kumar, Strategic review of interface carrier recombination in earth abundant Cu-Zn-Sn-S-Se solar cells: current challenges and future prospects. J. Mater. Chem. A. 5, 3069–3090 (2017). https://doi.org/10.1039/C6TA10543B

    Article  Google Scholar 

  2. P. Kush, S. Deka, Multifunctional copper-based quaternary chalcogenide semiconductors toward state-of-the-art energy applications. ChemNanoMat. 5, 373–402 (2019). https://doi.org/10.1002/cnma.201800321

    Article  Google Scholar 

  3. T. Gokmen, O. Gunawan, D.B. Mitzi, Semi-empirical device model for Cu2ZnSn(S, Se)4 solar cells. Appl. Phys. Lett. 105, 2–7 (2014). https://doi.org/10.1063/1.4890844

    Article  Google Scholar 

  4. S. Kukreti, G.K. Gupta, A. Dixit, Theoretical DFT studies of Cu2HgSnS4 absorber material and Al:ZnO/ZnO/CdS/Cu2HgSnS4/Back contact heterojunction solar cell. Sol. Energy 225, 802–813 (2021). https://doi.org/10.1016/j.solener.2021.07.071

    Article  ADS  Google Scholar 

  5. N.S. Lewis, Research opportunities to advance solar energy utilization. Science (80) 351, aad1920 (2016). https://doi.org/10.1126/science.aad1920

    Article  Google Scholar 

  6. K. Sun, C. Yan, F. Liu, J. Huang, F. Zhou, J.A. Stride, M. Green, X. Hao, Over 9% efficient kesterite Cu2ZnSnS4 solar cell fabricated by using Zn1–xCdxS buffer layer. Adv. Energy Mater. 6, 1600046 (2016). https://doi.org/10.1002/aenm.201600046

    Article  Google Scholar 

  7. J. Kim, H. Hiroi, T.K. Todorov, O. Gunawan, M. Kuwahara, T. Gokmen, D. Nair, M. Hopstaken, B. Shin, Y.S. Lee, W. Wang, H. Sugimoto, D.B. Mitzi, High efficiency Cu2ZnSn(S, Se)4 solar cells by applying a double in 2S3/CdS emitter. Adv. Mater. 26, 7427–7431 (2014). https://doi.org/10.1002/adma.201402373

    Article  Google Scholar 

  8. X. Li, D. Zhuang, N. Zhang, M. Zhao, X. Yu, P. Liu, Y. Wei, G. Ren, Achieving 11.95% efficient Cu2ZnSnSe4 solar cells fabricated by sputtering a Cu-Zn-Sn-Se quaternary compound target with a selenization process. J. Mater. Chem. A. 7, 9948–9957 (2019). https://doi.org/10.1039/c9ta00385a

    Article  Google Scholar 

  9. S. Hadke, S. Levcenko, G. Sai Gautam, C.J. Hages, J.A. Márquez, V. Izquierdo-Roca, E.A. Carter, T. Unold, L.H. Wong, Suppressed deep traps and bandgap fluctuations in Cu2CdSnS4 Solar Cells with ≈8% efficiency. Adv. Energy Mater. 9, 1–11 (2019). https://doi.org/10.1002/aenm.201902509

    Article  Google Scholar 

  10. D. Shin, T. Zhu, X. Huang, O. Gunawan, V. Blum, D.B. Mitzi, Earth-abundant chalcogenide photovoltaic devices with over 5% efficiency based on a Cu2BaSn(S, Se)4 absorber. Adv. Mater. 29, 1–7 (2017). https://doi.org/10.1002/adma.201606945

    Article  Google Scholar 

  11. G.K. Gupta, Cu2ZnSnS4 related Chalcogenide Absorbers : Thin Films and Heterostructure Photovoltaic Devices, (2018).

  12. S. Siebentritt, Why are kesterite solar cells not 20% efficient? Thin Solid Films 535, 1–4 (2013). https://doi.org/10.1016/j.tsf.2012.12.089

    Article  ADS  Google Scholar 

  13. N.Y. Dzade, First-principles insights into the electronic structure, optical and band alignment properties of earth-abundant Cu2SrSnS4 solar absorber. Sci. Rep. 11, 1–11 (2021). https://doi.org/10.1038/s41598-021-84037-8

    Article  Google Scholar 

  14. A. Crovetto, R. Nielsen, E. Stamate, O. Hansen, B. Seger, I. Chorkendorff, P.C.K. Vesborg, Wide band gap Cu2SrSnS4 solar cells from oxide precursors. ACS Appl. Energy Mater. 2, 7340–7344 (2019). https://doi.org/10.1021/acsaem.9b01322

    Article  Google Scholar 

  15. M.J. Romero, H. Du, G. Teeter, Y. Yan, M.M. Al-Jassim, Comparative study of the luminescence and intrinsic point defects in the kesterite Cu2ZnSnS4 and chalcopyrite Cu(In, Ga)Se2 thin films used in photovoltaic applications. Phys. Rev. B 84, 1–5 (2011). https://doi.org/10.1103/PhysRevB.84.165324

    Article  Google Scholar 

  16. T. Gokmen, O. Gunawan, T.K. Todorov, D.B. Mitzi, Band tailing and efficiency limitation in kesterite solar cells. Appl. Phys. Lett. 103, 2–7 (2013). https://doi.org/10.1063/1.4820250

    Article  Google Scholar 

  17. H. Xiao, Z. Chen, K. Sun, C. Yan, J. Xiao, L. Jiang, X. Hao, Y. Lai, F. Liu, Sol-gel solution-processed Cu2SrSnS4 thin films for solar energy harvesting. Thin Solid Films 697, 137828 (2020). https://doi.org/10.1016/j.tsf.2020.137828

    Article  ADS  Google Scholar 

  18. Z. Su, G. Liang, P. Fan, J. Luo, Z. Zheng, Z. Xie, W. Wang, S. Chen, J. Hu, Y. Wei, C. Yan, J. Huang, X. Hao, F. Liu, Device postannealing enabling over 12% efficient solution-processed Cu2ZnSnS4 solar cells with Cd2+ substitution. Adv. Mater. 32, 1–12 (2020). https://doi.org/10.1002/adma.202000121

    Article  Google Scholar 

  19. V.C.L. Teske, Darstellung und Kristallstruktu r von. Z. Anorg. Allg. Chem. 419, 67–76 (1976)

    Article  Google Scholar 

  20. A. El Kissani, A. Abali, S. Drissi, L. Nkhaili, K. El Assail, A. Outzourhit, D.A. El Haj, H. Chaib, Earth abundant Cu2FeSnS4 thin film solar cells, in: 2021 9th Int. Renew. Sustain. Energy Conf., 2021: pp. 1–4.https://doi.org/10.1109/IRSEC53969.2021.9741201

  21. F. Hong, W. Lin, W. Meng, Y. Yan, Trigonal Cu2-II-Sn-VI4 (II = Ba, Sr and VI = S, Se) quaternary compounds for earth-abundant photovoltaics. Phys. Chem. Chem. Phys. 18, 4828–4834 (2016). https://doi.org/10.1039/c5cp06977g

    Article  Google Scholar 

  22. A. Crovetto, Z. Xing, M. Fischer, R. Nielsen, C.N. Savory, T. Rindzevicius, N. Stenger, D.O. Scanlon, I. Chorkendorff, P.C.K. Vesborg, Experimental and first-principles spectroscopy of Cu2SrSnS4 and Cu2BaSnS4 photoabsorbers. ACS Appl. Mater. Interfaces 12, 50446–50454 (2020). https://doi.org/10.1021/acsami.0c14578

    Article  Google Scholar 

  23. Y. Yang, G. Wang, W. Zhao, Q. Tian, L. Huang, D. Pan, Solution-processed highly efficient Cu2ZnSnSe4 thin film solar cells by dissolution of elemental Cu, Zn, Sn, and Se powders. ACS Appl. Mater. Interfaces 7, 460–464 (2015). https://doi.org/10.1021/am5064926

    Article  Google Scholar 

  24. D. Shin, T. Zhu, X. Huang, O. Gunawan, V. Blum, D.B. Mitzi, Earth-Abundant Chalcogenide Photovoltaic Devices with over 5 % Efficiency Based on a Cu2BaSn(S,Se)4 Absorber, 1606945 (2017) 1–7. https://doi.org/10.1002/adma.201606945.

  25. H. Guo, R. Meng, G. Wang, S. Wang, L. Wu, J. Li, Z. Wang, J. Dong, X. Hao, Y. Zhang, Band-gap-graded Cu2ZnSn(S, Se)4 drives highly efficient solar cells. Energy Environ. Sci. 15, 693–704 (2022). https://doi.org/10.1039/d1ee03134a

    Article  Google Scholar 

  26. T. Dhakal, A.S. Nandur, R. Christian, P. Vasekar, S. Desu, C. Westgate, D.I. Koukis, D.J. Arenas, D.B. Tanner, Transmittance from visible to mid infra-red in AZO films grown by atomic layer deposition system. Sol. Energy 86, 1306–1312 (2012). https://doi.org/10.1016/j.solener.2012.01.022

    Article  ADS  Google Scholar 

  27. J.L. Chiang, S.W. Li, B.K. Yadlapalli, D.S. Wuu, Deposition of high-transmittance ITO thin films on polycarbonate substrates for capacitive-touch applications. Vacuum 186, 110046 (2021). https://doi.org/10.1016/j.vacuum.2021.110046

    Article  ADS  Google Scholar 

  28. A. Khan, R.R. Kumar, J. Cong, M. Imran, D. Yang, X. Yu, CVD graphene on textured silicon: an emerging technologically versatile heterostructure for energy and detection applications. Adv. Mater. Interfaces 9, 23–26 (2022). https://doi.org/10.1002/admi.202100977

    Article  Google Scholar 

  29. J. Cong, A. Khan, P. Hang, D. Yang, X. Yu, Graphene/Si heterostructure with an organic interfacial layer for a self-powered photodetector with a high ON/OFF ratio. ACS Appl. Electron. Mater. 4, 1715–1722 (2022). https://doi.org/10.1021/acsaelm.1c01350

    Article  Google Scholar 

  30. Z.A. Ansari, T.J. Singh, S.M. Islam, S. Singh, P. Mahala, A. Khan, K.J. Singh, Photovoltaic solar cells based on graphene/gallium arsenide Schottky junction. Optik (Stuttg). 182, 500–506 (2019). https://doi.org/10.1016/j.ijleo.2019.01.078

    Article  ADS  Google Scholar 

  31. Y. Wu, X. Zhang, J. Jie, C. Xie, X. Zhang, B. Sun, Y. Wang, P. Gao, Graphene transparent conductive electrodes for highly efficient silicon nanostructures-based hybrid heterojunction solar cells. J. Phys. Chem. C 117, 11968–11976 (2013). https://doi.org/10.1021/jp402529c

    Article  Google Scholar 

  32. D. Koller, F. Tran, P. Blaha, Improving the modified Becke-Johnson exchange potential. Phys. Rev. B 85, 155109 (2012). https://doi.org/10.1103/PhysRevB.85.155109

    Article  ADS  Google Scholar 

  33. H. Zaari, A.G. El Hachimi, A. Benyoussef, A. El Kenz, Comparative study between TB-mBJ and GGA+U on magnetic and optical properties of CdFe2O4. J. Magn. Magn. Mater. 393, 183–187 (2015). https://doi.org/10.1016/j.jmmm.2015.05.032

    Article  ADS  Google Scholar 

  34. S. Cottenier, Density Functional Theory and the Family of (L)APW-methods: a step-by-step introduction, 2013.

  35. P. Blaha, K. Schwarz, F. Tran, R. Laskowski, G.K.H. Madsen, L.D. Marks, WIEN2k: An APW+lo program for calculating the properties of solids. J. Chem. Phys. 152, 074101 (2020). https://doi.org/10.1063/1.5143061

    Article  ADS  Google Scholar 

  36. K. Schwarz, P. Blaha, S.B. Trickey, Electronic structure of solids with WIEN2k. Mol. Phys. 108, 3147–3166 (2010). https://doi.org/10.1080/00268976.2010.506451

    Article  ADS  Google Scholar 

  37. A.P. Dudarev, S. L. and Botton, G. A. and Savrasov, S. Y. and Humphreys, C. J. and Sutton, Electron-energy-loss spectra and the structural stability of nickel oxide An LSDA+U study, Phys. Rev. B. 57: 1505–1509 (1998). https://doi.org/10.1103/PhysRevB.57.1505.

  38. S.H. Zyoud, A.H. Zyoud, N.M. Ahmed, A.R. Prasad, S.N. Khan, A.F.I. Abdelkader, M. Shahwan, Numerical modeling of high conversion efficiency FTO/ZnO/CdS/CZTS/Mo thin film-based solar cells: using SCAPS-1d software. Crystals 11, 1–21 (2021). https://doi.org/10.3390/cryst11121468

    Article  Google Scholar 

  39. B.G. Streetman, S.K. Banerjee, Solid State Electronic Devices, n.d.

  40. P.W. and U. Würfel, Physics of Solar Cells From basic principles to advanced concepts, 3rd ed., WILEY-VCH, 2016.

  41. O.K. Simya, A. Mahaboobbatcha, K. Balachander, A comparative study on the performance of Kesterite based thin film solar cells using SCAPS simulation program. Superlattices Microstruct. 82, 248–261 (2015). https://doi.org/10.1016/j.spmi.2015.02.020

    Article  ADS  Google Scholar 

  42. F.D. Murnaghan, The compressibility of media under extreme pressures. Proc. Natl. Acad. Sci. 30, 244–247 (1944). https://doi.org/10.1073/pnas.30.9.244

    Article  ADS  MathSciNet  Google Scholar 

  43. K. Ohta, H. Ishida, Comparison among several numerical integration methods for kramers-kronig transformation. Appl. Spectrosc.Spectrosc. 42, 952–957 (1988). https://doi.org/10.1366/0003702884430380

    Article  ADS  Google Scholar 

  44. M.S. Yaseen, G. Murtaza, R.M. Arif Khalil, First principle study of structural, electronic, optical, and transport properties of ternary compounds NaGaX2 (X = S, Se, and Te) in tetragonal chalcopyrite phase. Opt. Quantum Electron. 51, 1–14 (2019). https://doi.org/10.1007/s11082-019-2077-4

    Article  Google Scholar 

  45. G.K. Gupta, A. Dixit, Theoretical studies of single and tandem Cu2ZnSn(S/Se)4 junction solar cells for enhanced efficiency. Opt. Mater. (Amst) 82, 11–20 (2018). https://doi.org/10.1016/j.optmat.2018.05.030

    Article  ADS  Google Scholar 

  46. M. Roknuzzaman, C. Zhang, K. Ostrikov, A. Du, H. Wang, L. Wang, T. Tesfamichael, Electronic and optical properties of lead-free hybrid double perovskites for photovoltaic and optoelectronic applications. Sci. Rep. 9, 1–7 (2019). https://doi.org/10.1038/s41598-018-37132-2

    Article  Google Scholar 

  47. C. Persson, Electronic and optical properties of Cu2ZnSnS4 and Cu2ZnSnSe4. J. Appl. Phys. 107, 053710 (2010). https://doi.org/10.1063/1.3318468

    Article  ADS  Google Scholar 

  48. A. Radzwan, R. Ahmed, A. Shaari, A. Lawal, First-principles study of electronic and optical properties of antimony sulphide thin film. Optik (Stuttg). 202, 163631 (2020). https://doi.org/10.1016/j.ijleo.2019.163631

    Article  ADS  Google Scholar 

  49. A.H. AL-Hammadi, S.H. Khoreem, Investigations on optical and electrical conductivity of Ba/Ni/Zn/Fe16O27 ferrite nanoparticles. Biointerface Res. Appl. Chem. 13, 1–12 (2023). https://doi.org/10.33263/BRIAC132.168.

    Article  Google Scholar 

  50. M. Dong, J. Zhang, J. Yu, Effect of effective mass and spontaneous polarization on photocatalytic activity of wurtzite and zinc-blende ZnS. APL Mater. 3, 104404 (2015). https://doi.org/10.1063/1.4922860

    Article  ADS  Google Scholar 

  51. A. Crovetto, Z. Xing, M. Fischer, R. Nielsen, T. Rindzevicius, C.N. Savory, D. Scanlon, P.C.K. Vesborg, Experimental and first-principles spectroscopy of Cu2SrSnS4 and Cu2BaSnS4 photoabsorbers. ACS Appl. Mater. Interfaces 12, 1–9 (2020). https://doi.org/10.1039/b000000x/stance

    Article  Google Scholar 

  52. S. Tobbeche, S. Kalache, M. Elbar, M. Nadjib, Improvement of the CIGS solar cell performance : structure based on a ZnS buffer layer. Opt. Quantum Electron. 51, 1–13 (2019). https://doi.org/10.1007/s11082-019-2000-z

    Article  Google Scholar 

  53. A.D. Adewoyin, M.A. Olopade, M. Chendo, Enhancement of the conversion efficiency of Cu2ZnSnS4 thin film solar cell through the optimization of some device parameters. Optik (Stuttg). 133, 122–131 (2017). https://doi.org/10.1016/j.ijleo.2017.01.008.

    Article  ADS  Google Scholar 

  54. P.P. Opoku, Francis and Govender, Krishna Kuben and van Sittert, Cornelia Gertina Catharina Elizabeth and Govender, Understanding the mechanism of enhanced charge separation and visible light photocatalytic activity of modified wurtzite ZnO with nanoclusters of ZnS and graphene oxide: from a hybrid density functional study. New J. Chem. 41, 8140–8155 (2017). https://doi.org/10.1039/c7nj01942d

    Article  Google Scholar 

  55. O.K. Simya, A. Mahaboobbatcha, K. Balachander, A comparative study on the performance of Kesterite based thin film solar cells using SCAPS simulation program. Superlattices Microstruct. 82, 248–261 (2015). https://doi.org/10.1016/j.spmi.2015.02.020.

    Article  ADS  Google Scholar 

  56. A. Kanevce, I. Repins, S.H. Wei, Impact of bulk properties and local secondary phases on the Cu2(Zn, Sn)Se4 solar cells open-circuit voltage. Sol. Energy Mater. Sol. Cells 133, 119–125 (2015). https://doi.org/10.1016/j.solmat.2014.10.042

    Article  Google Scholar 

  57. M.K. Hossain, A.A. Arnab, R.C. Das, K.M. Hossain, M.H.K. Rubel, M.F. Rahman, H. Bencherif, M.E. Emetere, M.K.A. Mohammed, R. Pandey, Combined DFT, SCAPS-1D, and wxAMPS frameworks for design optimization of efficient Cs2BiAgI6-based perovskite solar cells with different charge transport layers. RSC Adv. 12, 35002–35025 (2022). https://doi.org/10.1039/d2ra06734j

    Article  Google Scholar 

  58. M. Courel, J.A. Andrade-Arvizu, O. Vigil-Galán, The role of buffer/kesterite interface recombination and minority carrier lifetime on kesterite thin film solar cells. Mater. Res. Express. 3, 095501 (2016). https://doi.org/10.1088/2053-1591/3/9/095501

    Article  ADS  Google Scholar 

  59. M. Courel, J.A. Andrade-Arvizu, O. Vigil-Galán, Loss mechanisms influence on Cu2ZnSnS4/CdS-based thin film solar cell performance. Solid State Electron. 111, 243–250 (2015). https://doi.org/10.1016/j.sse.2015.05.038

    Article  ADS  Google Scholar 

  60. A.J. Kale, R. Chaurasiya, A. Dixit, Inorganic lead-free Cs2AuBiCl6 perovskite absorber and Cu2O hole transport material based single-junction solar cells with 22.18% power conversion efficiency. Adv. Theory Simul. 4, 1–14 (2021). https://doi.org/10.1002/adts.202000224

    Article  Google Scholar 

  61. G.K. Dalapati, S. Zhuk, S. Masudy-Panah, A. Kushwaha, H.L. Seng, V. Chellappan, V. Suresh, Z. Su, S.K. Batabyal, C.C. Tan, A. Guchhait, L.H. Wong, T.K.S. Wong, S. Tripathy, Impact of molybdenum out diffusion and interface quality on the performance of sputter grown CZTS based solar cells. Sci. Rep. 7, 1350 (2017). https://doi.org/10.1038/s41598-017-01605-7

    Article  ADS  Google Scholar 

  62. M. Kauk-Kuusik, K. Timmo, K. Muska, M. Pilvet, J. Krustok, R. Josepson, G. Brammertz, B. Vermang, M. Danilson, M. Grossberg, Detailed insight into the CZTS/CdS interface modification by air annealing in monograin layer solar cells. ACS Appl. Energy Mater. 4, 12374–12382 (2021). https://doi.org/10.1021/acsaem.1c02186

    Article  Google Scholar 

  63. S.K. Paswan, D. Chandra, U.M. Bhatt, B. Kumar, Performance Enhancement of CZTS and CZTSSe Solar Cells using CdS as Buffer Layer, Int. Conf. Electr. Electron. Eng. ICE3 2020. (2020) 728–732. https://doi.org/10.1109/ICE348803.2020.9122898.

  64. B. Ofuonye, J. Lee, M. Yan, C. Sun, J.M. Zuo, I. Adesida, Electrical and microstructural properties of thermally annealed Ni/Au and Ni/Pt/Au Schottky contacts on AlGaN/GaN heterostructures. Semicond. Sci. Technol. 29, 095005 (2014). https://doi.org/10.1088/0268-1242/29/9/095005

    Article  ADS  Google Scholar 

  65. C.C. Li, M. Gong, X.D. Chen, S. Li, B.W. Zhao, Y. Dong, G.C. Guo, F.W. Sun, Temperature dependent energy gap shifts of single color center in diamond based on modified Varshni equation. Diam. Relat. Mater. 74, 119–124 (2017). https://doi.org/10.1016/j.diamond.2017.03.002

    Article  ADS  Google Scholar 

  66. R. Ishikawa, S. Yamazaki, S. Watanabe, N. Tsuboi, Layer dependency of graphene layers in perovskite/graphene solar cells. Carbon N. Y. 172, 597–601 (2021). https://doi.org/10.1016/j.carbon.2020.10.065

    Article  Google Scholar 

  67. J. Cong, A. Khan, P. Hang, L. Cheng, D. Yang, X. Yu, High detectivity graphene/si heterostructure photodetector with a single hydrogenated graphene atomic interlayer for passivation and carrier tunneling. Nanotechnology (2022). https://doi.org/10.1088/1361-6528/ac8e0e

    Article  Google Scholar 

  68. R. Garg, N.K. Dutta, N.R. Choudhury, Work function engineering of graphene. Nanomaterials 4, 267–300 (2014). https://doi.org/10.3390/nano4020267

    Article  Google Scholar 

  69. M. Minbashi, A. Ghobadi, E. Yazdani, A. AhmadkhanKordbacheh, A. Hajjiah, Efficiency enhancement of CZTSSe solar cells via screening the absorber layer by examining of different possible defects. Sci. Rep. 10, 1–14 (2020). https://doi.org/10.1038/s41598-020-75686-2

    Article  Google Scholar 

  70. D. Mora-herrera, M. Pal, J. Santos-cruz, Theoretical modelling and device structure engineering of kesterite solar cells to boost the conversion efficiency over 20%. Sol. Energy 220, 316–330 (2021). https://doi.org/10.1016/j.solener.2021.03.056

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Ambesh Dixit acknowledges SERB, DST, Government of India through project # CRG/2020/004023 for carrying out this work. Author Ankit Kumar Yadav acknowledges the University Grant Commission (UGC) New Delhi, India, for the UGC-JRF scholarship and is thankful to Abhijeet J. Kale, Chandra Prakash, Priyambada Sahoo, Jitendra Yadav, Piyush Choudhary, Biswajit Pal, Bharati Rani, Minakshi, Priyanka Saini, and Sunil from A-MAD laboratory for all kind of support.

Funding

This research was supported by SERB, DST, (Grant CRG/2020/004023).

Author information

Authors and Affiliations

Authors

Contributions

AKY: Execution of idea, data curation and handling, analysis, initial draft writing; SR: supporting execution, data curation and handling, analysis, draft editing; SK: supporting execution, data curation and handling, analysis, draft editing; AD: Problem ideation, data analysis, project management, supervision, final draft editing.

Corresponding author

Correspondence to Ambesh Dixit.

Ethics declarations

Conflict of interest

The authors do not have any conflict of interest for the present work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, A.K., Ramawat, S., Kukreti, S. et al. Cu2SrSnS4 absorber based efficient heterostructure single junction solar cell: a hybrid-DFT and macroscopic simulation studies. Appl. Phys. A 130, 28 (2024). https://doi.org/10.1007/s00339-023-07184-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-07184-x

Keywords

Navigation