Skip to main content
Log in

Chemically synthesized facet-controlled visible light active BiVO4 thin films for photoelectrochemical water splitting

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The facile and cost-effective chemical bath deposition (CBD) method is used to synthesize highly photoactive facet-controlled bismuth vanadate (BiVO4) thin films on glass and stainless steel (SS) substrates. The facet-controlled BiVO4 thin films are synthesized by variation in anionic precursor with fine tuning of chemical bath pH from alkaline to acidic media. The variation of anionic precursor evolves the morphology of BiVO4 from dispersed nanoparticles to faceted microcrystals. Furthermore, the fine-tuning of chemical bath pH leads to the well-defined octahedral BiVO4 microcrystals. Compared to dispersed nanoparticulate BiVO4 photoanodes, the octahedral BiVO4 photoanodes demonstrated superior photocurrent density of 2.75 mA cm−2 (at 1.23 V vs. RHE), good photostability and charge separation efficiency (45.5%) owing to their excellent PEC reaction kinetics. The present study underscores the usefulness of the CBD method for facet-controlled synthesis of semiconducting thin films for different photo-functional applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Author contributions

SPK: investigation, methodology, writing—original manuscript, YMC: validation, VVM: validation, PDS: formal analysis, SVT: software, SAP: software, UMP: data curation, KVG: writing—review and editing, DBM: resources, AUP: resources, JLG: conceptualization, supervision, funding acquisition, writing—review and editing.

Data availability

The authors declare that the data supporting the findings of this study are available within this paper and its Supplementary Information files.

References

  1. R.M.N. Yerga, M.C.A. Galvan, F.D. Valle, J.A.V. Mano, J.L.G. Fierro, Chem. Sus. Chem. 2, 471–485 (2009)

    Google Scholar 

  2. A.A. Ismail, D.W. Bahnemann, Sol. Energy Mater. Sol. Cells 128, 85–101 (2014)

    Google Scholar 

  3. I. Paramasivam, H. Jha, N. Liu, P. Schmuki, Small 8, 3073–3103 (2012)

    Google Scholar 

  4. W. Yang, R.R. Prabhakar, J. Tan, S.D. Tilley, J. Moon, Chem. Soc. Rev. 48, 4979–5015 (2019)

    Google Scholar 

  5. J. Li, N. Wu, Catal. Sci. Technol. 5, 1360–1384 (2015)

    Google Scholar 

  6. M. Zayed, A.M. Ahmed, M. Shaban, Int. J. Hydrog. Energy 44, 17630–17648 (2019)

    Google Scholar 

  7. H. Magnan, D. Stanescu, M. Rioult, E. Fonda, A. Barbier, J. Phys. Chem. C 123, 5240–5248 (2019)

    Google Scholar 

  8. S. Shen, J. Chen, L. Cai, F. Ren, L. Guo, J. Materiomics 1, 134–145 (2015)

    Google Scholar 

  9. V.M. Aroutiounian, V.M. Arakelyan, G.E. Shahnazaryan, Sol. Energy 78, 581–592 (2005)

    ADS  Google Scholar 

  10. S. Chandrasekaran, L. Yao, L. Deng, C. Bowen, Y. Zhang, S. Chen, Z. Lin, F. Peng, P. Zhang, Chem. Soc. Rev. 48, 4178–4280 (2019)

    Google Scholar 

  11. W. Xu, W. Tian, L. Li, RRL Solar 5, 2000412 (2021)

    Google Scholar 

  12. M. Suryawanshi, S.W. Shin, U. Ghorpade, D. Song, C.W. Hong, S.-S. Han, J. Heo, S.H. Kang, J.H. Kim, J. Mater. Chem. A 5, 4695–4709 (2017)

    Google Scholar 

  13. M.G. Tecedor, D.C. Morcoso, R.F. Climent, S. Gimenez, Adv. Mater. Interfaces 6, 1900299 (2019)

    Google Scholar 

  14. Z.F. Huang, L. Pan, J.J. Zou, X. Zhang, L. Wang, Nanoscale 6, 14044–14063 (2014)

    ADS  Google Scholar 

  15. G. Xi, J. Ye, Chem. Commun. 46, 1893–1895 (2010)

    Google Scholar 

  16. J. Zhu, F. Fan, R. Chen, H. An, Z. Feng, C. Li, Angew. Chem. 127, 9239–9242 (2015)

    ADS  Google Scholar 

  17. G. Liu, Y. Zhu, Q. Yan, H. Wang, P. Wu, Y. Shen, Y. Doekhi-Bennani, Sci. Total. Environ. 762, 143086 (2021)

    ADS  Google Scholar 

  18. S.S. Han, J.Y. Park, H.S. Hwang, H.R. Choe, K.M. Nam, E.J. Cho, Chem. Sus. Chem. 12, 3018–3022 (2019)

    Google Scholar 

  19. X. Zhai, Z. Li, Z. Lu, G. Wang, P. Li, Y. Gao, X. Huang, W. Huang, H. Uji-i, G. Lu, J. Colloid, Interface Sci. 542, 207–212 (2019)

    ADS  Google Scholar 

  20. Y. Zhang, H. Gong, Y. Zhang, K. Liu, H. Cao, H. Yan, J. Zhu, Eur. J. Inorg. Chem. 2017, 2990–2997 (2017)

    Google Scholar 

  21. H. Li, G. Liu, X. Duan, Mater. Chem. Phys. 115, 9–13 (2009)

    Google Scholar 

  22. G.S. Kamble, Y.-C. Ling, Sci. Rep. 10, 12993 (2020)

    ADS  Google Scholar 

  23. I. Khan, A.Z. Khan, A. Sufyan, M.Y. Khan, S.I. Basha, A. Khan, Ultrason. Sonochem. 68, 105233 (2020)

    Google Scholar 

  24. G. Zhang, Y. Meng, B. Xie, Z. Ni, H. Lu, S. Xia, Appl. Catal. B Environ. 296, 120379 (2021)

    Google Scholar 

  25. D. Wang, H. Jiang, X. Zong, Q. Xu, Y. Ma, G. Li, C. Li, Chem. Eur. J. 17, 1275–1282 (2011)

    Google Scholar 

  26. R.S. Mane, C.D. Lokhande, Mater. Chem. Phys. 65, 1–31 (2000)

    Google Scholar 

  27. M.C. Neves, T. Trindade, Thin Solid Films 406, 93–97 (2002)

    ADS  Google Scholar 

  28. L. Xia, J. Li, J. Bai, L. Li, S. Chen, B. Zhou, Nano-Micro Lett. 10, 11–21 (2018)

    ADS  Google Scholar 

  29. G. Rahman, A. Akhtar, N.A. Khan, S.Y. Chae, A.U.H.A. Shah, O.-S. Joo, Optik 224, 165516 (2020)

    ADS  Google Scholar 

  30. M. Han, X. Chen, T. Sun, O.K. Tan, M.S. Tse, Cryst. Eng. Comm. 13, 6674–6679 (2011)

    Google Scholar 

  31. W. Luo, Z. Wang, L. Wan, Z. Li, T. Yu, Z. Zou, J. Phys. D Appl. Phys. 43, 405402–405409 (2010)

    ADS  Google Scholar 

  32. T.W. Kim, Y. Ping, G.A. Galli, K.S. Choi, Nat. Commun. 6, 1–10 (2015)

    ADS  Google Scholar 

  33. X. Zhong, H. He, M. Yang, G. Ke, Z. Zhao, F. Dong, B. Wang, Y. Chen, X. Shi, Y. Zhou, J. Mater. Chem. A 6, 10456–10465 (2018)

    Google Scholar 

  34. S. Bera, S.A. Lee, W.-J. Lee, J.-H. Kim, C. Kim, H.G. Kim, H. Khan, S. Jana, H.W. Jang, S.-H. Kwon, A.C.S. Appl, Mater. Interfaces 13, 14291–14301 (2021)

    Google Scholar 

  35. J.L. Gunjakar, A. Inamdar, B. Hou, S. Cha, S.M. Pawar, A.A.A. Talha, H.S. Chavan, J. Kim, S. Cho, S. Lee, Y. Jo, H. Kim, H. Im, Nanoscale 10, 8953–8961 (2018)

    Google Scholar 

  36. J. Livage, Coord. Chem. Rev. 178–180, 999–1018 (1998)

    Google Scholar 

  37. Y. Hayashi, Coord. Chem. Rev. 255, 2270–2280 (2011)

    Google Scholar 

  38. W. Sun, M. Xie, L. Jing, Y. Luan, H. Fu, J. Solid State Chem. 184, 3050–3054 (2011)

    ADS  Google Scholar 

  39. A.K. Adepu, V. Katta, N. Venkatathri, New J. Chem. 41, 2498–2504 (2017)

    Google Scholar 

  40. T.D. Nguyen, V.H. Nguyen, S. Nanda, D.N. Vo, V.H. Nguyen, T.V. Tran, L.X. Nong, T.T. Nguyen, L.G. Bach, B. Abdullah, S.S. Hong, T.V. Nguyen, Environ. Chem. Lett. 18, 1779–1801 (2020)

    Google Scholar 

  41. T.D. Nguyen, Q.T.P. Bui, T.B. Le, T.M. Altahtamouni, K.B. Vu, D.V.N. Vo, N.T.H. Le, T.D. Luu, S.S. Hong, K.T. Lim, RSC Adv. 9, 23526–23534 (2019)

    ADS  Google Scholar 

  42. T.S. Dabodiya, P. Selvarasu, A.V. Murugan, Inorg. Chem. 58, 5096–5110 (2019)

    Google Scholar 

  43. A. Helal, S.M. El-Sheikh, J. Yu, A.I. Eid, S.A. El-Haka, S.E. Samra, J. Nanopart. Res. 22, 132 (2020)

    ADS  Google Scholar 

  44. Z. Jiang, Y. Liu, T. Jing, B. Huang, X. Zhang, X. Qin, Y. Dai, M.-H. Whangbo, J. Phys. Chem. C 120, 2058–2063 (2016)

    Google Scholar 

  45. Y. Deng, L. Tang, G. Zeng, C. Feng, H. Dong, J. Wang, H. Feng, Y. Liu, Y. Zhou, Y. Pang, Environ. Sci. Nano 4, 1494–1511 (2017)

    Google Scholar 

  46. K.K. Dey, S. Gahlawat, P.P. Ingole, J. Mater. Chem. A 7, 21207–21221 (2019)

    Google Scholar 

  47. R.A. Rather, A. Mehta, Y. Lu, M. Valant, M. Fang, W. Liu, Int. J. Hydro. Eng. 46, 21866–21888 (2021)

    Google Scholar 

  48. M. Yang, H. He, A. Liao, J. Huang, Y. Tang, J. Wang, G. Ke, F. Dong, L. Yang, L. Bian, Y. Zhou, Inorg. Chem. 57, 15280–15288 (2018)

    Google Scholar 

  49. X. Zhang, B. Zhang, K. Cao, J. Brillet, J. Chen, M. Wang, Y. Shen, J. Mater. Chem. A 3, 21630–21636 (2015)

    Google Scholar 

  50. J.L. Gunjakar, T.W. Kim, H.N. Kim, I.Y. Kim, S.J. Hwang, J. Am. Chem. Soc. 133, 14998–15007 (2011)

    Google Scholar 

  51. K. Saruwatari, H. Sato, T. Idei, J. Kameda, A. Yamagishi, A. Takagaki, K. Domen, J. Phys. Chem. B 109, 12410–12416 (2005)

    Google Scholar 

  52. H. Shi, H. Guo, S. Wang, G. Zhang, Y. Hu, W. Jiang, G. Liu, Energy Fuels 36, 11404–11427 (2022)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Science and Engineering Research Board (SERB), a statutory body of the Department of Science and Technology (DST), Government of India, for awarding the Ramanujan Fellowship (SB/S2/RJN-090/2017) and core research grant (CRG/2019/006059). The authors thank D. Y. Patil Education Society, Kasaba Bawada, Kolhapur, for financial support through research project sanction No. DYPES/DU/R&D/2022/2352.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayavant L. Gunjakar.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1956 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulkarni, S.P., Chitare, Y.M., Magdum, V.V. et al. Chemically synthesized facet-controlled visible light active BiVO4 thin films for photoelectrochemical water splitting. Appl. Phys. A 129, 876 (2023). https://doi.org/10.1007/s00339-023-07164-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-07164-1

Keywords

Navigation