Skip to main content
Log in

Self-powered photodetector based on Cu2O thin film fabricated using E-beam evaporation technique

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A self-powered photodetector based on copper oxide thin film (Cu2O-TF) is deposited using the e-beam evaporation technique. One notable advantage of this fabrication process is that it does not require the use of any catalysts. The XRD analysis revealed the presence of cuprous oxide (Cu2O) with a distinct peak at ~ 42.66º indicating (200) orientation. SEM analysis confirms the successful growth of the Cu2O-TF, revealing a porous semi-spherical structure with a measured thickness of ~ 100 nm. Moreover, electrical analysis was studied for the voltage range of − 2 to 2 V. The Cu2O-TF device exhibited a rectification ratio (RR) of 64 at + 1 V. Notably, the device exhibited self-powered characteristics, showing a stable switching response characterized by rise time (τr) values of ~ 0.183 sec and fall time (τf) of ~ 0.236 s at 0 V. Furthermore, the device obtained maximum responsivity in the near IR region, extending from ~ 700 to 800 nm, with peak intensity reaching ~ 720 nm along with responsivity values of ~ 6.6 mA/W. Moreover, the device obtained a detectivity value of ~ 3.45 × 1011 Jones and a low-noise equivalent power of ~ 8.12 × 10–12 at 0 V. The overall results highlight the suitability of the device for self-powered photodetector applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data that supports the findings of this study is available within the article. No new data has been added.

References

  1. D. Periyanagounder, P. Gnanasekar, P. Varadhan, J.-H. He, J. Kulandaivel, J. Mater. Chem. C 6, 9545 (2018)

    Google Scholar 

  2. Y. Peng, J. Lu, X. Wang, W. Ma, M. Que, Q. Chen, F. Li, X. Liu, W. Gao, C. Pan, Nano Energy 94, 106945 (2022)

    Google Scholar 

  3. H. Schneider, C. Schönbein, M. Walther, K. Schwarz, J. Fleissner, P. Koidl, Appl. Phys. Lett. 71, 246 (1997)

    ADS  Google Scholar 

  4. D. Zhang, C. Fuentes-Hernandez, R. Vijayan, Y. Zhang, Y. Li, J.W. Park, Y. Wang, Y. Zhao, N. Arora, A. Mirzazadeh, Y. Do, T. Cheng, S. Swaminathan, T. Starner, T.L. Andrew, G.D. Abowd, Npj Flex. Electron. 6, 7 (2022)

    Google Scholar 

  5. T. Park, S. Park, J.H. Park, J.Y. Min, Y. Jung, S. Kyoung, T.Y. Kang, K. Kim, Y.S. Rim, J. Hong, Nanomaterials 12, 2983 (2022)

    Google Scholar 

  6. C. He, D. Guo, K. Chen, S. Wang, J. Shen, N. Zhao, A. Liu, Y. Zheng, P. Li, Z. Wu, C. Li, F. Wu, W. Tang, A.C.S. Appl, Nano Mater. 2, 4095 (2019)

    Google Scholar 

  7. Z. Wu, L. Jiao, X. Wang, D. Guo, W. Li, L. Li, F. Huang, W. Tang, J. Mater. Chem. C 5, 8688 (2017)

    Google Scholar 

  8. B. Sun, W. Sun, S. Li, G. Ma, W. Jiang, Z. Yan, X. Wang, Y. An, P. Li, Z. Liu, W. Tang, Opt. Commun. 504, 127483 (2022)

    Google Scholar 

  9. H.-S. Kim, M.D. Kumar, M. Patel, J. Kim, Sens. Actuators A 252, 35 (2016)

    Google Scholar 

  10. R.S. Dubey, S.R. Jadkar, A.B. Bhorde, ACS Omega 6, 3470 (2021)

    Google Scholar 

  11. S. Phetsang, P. Kidkhunthod, N. Chanlek, J. Jakmunee, P. Mungkornasawakul, K. Ounnunkad, Sci. Rep. 11, 9302 (2021)

    ADS  Google Scholar 

  12. A. Aktar, S. Ahmmed, J. Hossain, A.BMd. Ismail, ACS Omega 5, 25125 (2020)

    Google Scholar 

  13. J. Sydorenko, A. Mere, M. Krunks, M. Krichevskaya, I.O. Acik, RSC Adv. 12, 35531 (2022)

    ADS  Google Scholar 

  14. M. Hafez, F. Al-Marzouki, W.E. Mahmoud, Mater. Lett. 65, 1868 (2011)

    Google Scholar 

  15. D.O. Scanlon, G.W. Watson, J. Phys. Chem. Lett. 1, 2582 (2010)

    Google Scholar 

  16. Y. Yang, D. Xu, Q. Wu, P. Diao, Sci. Rep. 6, 35158 (2016)

    ADS  Google Scholar 

  17. J. Luo, L. Steier, M.-K. Son, M. Schreier, M.T. Mayer, M. Grätzel, Nano Lett. 16, 1848 (2016)

    ADS  Google Scholar 

  18. D. Ursu, N. Miclau, M. Miclau, Electron. Mater. Lett. 14, 405 (2018)

    ADS  Google Scholar 

  19. A.A. Ejigu, L. Chao, J. Vac. Sci. Technol. B Nanotechnol. Microelectron. 35, 061205 (2017)

    ADS  Google Scholar 

  20. N.M. Rosas-Laverde, A.I. Pruna, J. Cembrero, D. Busquets-Mataix, Coatings 10, 935 (2020)

    Google Scholar 

  21. Z. Ai, L. Zhang, S. Lee, W. Ho, J. Phys. Chem. C 113, 20896 (2009)

    Google Scholar 

  22. L. Bergerot, C. Jiménez, O. Chaix-Pluchery, L. Rapenne, J.-L. Deschanvres, Phys. Status Solidi A 212, 1735 (2015)

    ADS  Google Scholar 

  23. S. Dolai, R. Dey, S. Das, S. Hussain, R. Bhar, A.K. Pal, J. Alloy. Compd. 724, 456 (2017)

    Google Scholar 

  24. K.G. Yang, P. Hu, S.X. Wu, L.Z. Ren, M. Yang, W.Q. Zhou, F.M. Yu, Y.J. Wang, M. Meng, G.L. Wang, S.W. Li, Mater. Lett. 166, 23 (2016)

    Google Scholar 

  25. S. Kundu, N. Sutradhar, R. Thangamuthu, B. Subramanian, A.B. Panda, M. Jayachandran, J. Nanopart. Res. 14, 1040 (2012)

    ADS  Google Scholar 

  26. D.C. Agarwal, R.S. Chauhan, A. Kumar, D. Kabiraj, F. Singh, S.A. Khan, D.K. Avasthi, J.C. Pivin, M. Kumar, J. Ghatak, P.V. Satyam, J. Appl. Phys. 99, 123105 (2006)

    ADS  Google Scholar 

  27. S.S. Singh, B. Shougaijam, M.W. Alam, N.K. Singh, J. Mater. Sci. Mater. Electron. 34, 854 (2023)

    Google Scholar 

  28. T.T. Nguyen, M. Patel, S. Kim, R.A. Mir, J. Yi, V.-A. Dao, J. Kim, J. Power. Sources 481, 228865 (2021)

    Google Scholar 

  29. F.S.B. Kafi, K.M.D.C. Jayathileka, R.P. Wijesundera, W. Siripala, Mater. Res. Express 6, 085520 (2019)

    ADS  Google Scholar 

  30. A. Sekkat, V.H. Nguyen, C.A. Masse de La Huerta, L. Rapenne, D. Bellet, A. Kaminski-Cachopo, G. Chichignoud, D. Muñoz-Rojas, Commun. Mater. 2, 78 (2021)

    Google Scholar 

  31. A.L. Patterson, Phys. Rev. 56, 978 (1939)

    ADS  Google Scholar 

  32. M.W. Maswanganye, G.L. Kabongo, M.S. Dhlamini, Nanomaterials 13, 77 (2022)

    Google Scholar 

  33. F.A. Akgul, G. Akgul, N. Yildirim, H.E. Unalan, R. Turan, Mater. Chem. Phys. 147, 987 (2014)

    Google Scholar 

  34. L. Xu, J. Li, H. Sun, X. Guo, J. Xu, H. Zhang, X. Zhang, Front. Chem. 7, 420 (2019)

    ADS  Google Scholar 

  35. M.A. Khan, N. Nayan, S. Shadiullah, M.K. Ahmad, C.F. Soon, Nanomaterials 10, 1298 (2020)

    Google Scholar 

  36. K.D.R.N. Kalubowila, L.K.A.D.D.S. Gunawardhana, R.P. Wijesundera, W. Siripala, Semicond. Sci. Technol. 29, 075012 (2014)

    ADS  Google Scholar 

  37. H.T.D.S. Madusanka, H.M.A.M.C. Herath, C.A.N. Fernando, Sens. Actuators A 296, 61 (2019)

    Google Scholar 

  38. T.T. Nguyen, M. Patel, J. Kim, Surf. Interfaces 23, 100934 (2021)

    Google Scholar 

  39. B. Moirangthem, M.W. Alam, N.K. Singh, Appl. Phys. A 129, 622 (2023)

    ADS  Google Scholar 

  40. Ph.N. Meitei, M.W. Alam, C. Ngangbam, N.K. Singh, Appl. Nanosci. 11, 1437 (2021)

    ADS  Google Scholar 

  41. S. Kossar, R. Amiruddin, A. Rasool, Micro Nano Syst. Lett. 9, 1 (2021)

    ADS  Google Scholar 

  42. S.R. Meitei, L.S. Devi, N.K. Singh, J. Phys. D Appl. Phys. 56, 395104 (2023)

    Google Scholar 

  43. A.K. Singh, P. Chetri, M.C. Pedapudi, J.C. Dhar, I.E.E.E. Photon, Technol. Lett. 34, 1285 (2022)

    Google Scholar 

  44. W. Yin, J. Yang, K. Zhao, A. Cui, J. Zhou, W. Tian, W. Li, Z. Hu, J. Chu, A.C.S. Appl, Mater. Interfaces 12, 11797 (2020)

    Google Scholar 

  45. Y. Zhao, D. Jiang, M. Zhao, Appl. Surf. Sci. 636, 157800 (2023)

    Google Scholar 

  46. A. Basir, H. Alzahrani, K. Sulaiman, F.F. Muhammadsharif, S.M. Abdullah, A.Y. Mahmoud, R.R. Bahabry, M.S. Alsoufi, T.M. Bawazeer, S.F. Ab Sani, Mater. Sci. Semicond. Process. 131, 105886 (2021)

    Google Scholar 

  47. Z. Lu, Y. Xu, Y. Yu, K. Xu, J. Mao, G. Xu, Y. Ma, D. Wu, J. Jie, Adv. Funct. Mater. 30, 1907951 (2020)

    Google Scholar 

  48. B. Zu, B. Lu, Y. Guo, T. Xu, X. Dou, J. Mater. Chem. C 2, 2045 (2014)

    Google Scholar 

  49. M.M. Hassan, M.A. Fakhri, S.A. Adnan, I.O.P. Conf, IOP Conf. Ser. 454, 012172 (2018)

    Google Scholar 

  50. P. Chetri, J.C. Dhar, Mater. Sci. Semicond. Process. 100, 123 (2019)

    Google Scholar 

  51. Q. Hong, Y. Cao, J. Xu, H. Lu, J. He, J.-L. Sun, A.C.S. Appl, Mater. Interfaces 6, 20887 (2014)

    Google Scholar 

  52. J. Yu, M. Yu, Z. Wang, L. Yuan, Y. Huang, L. Zhang, Y. Zhang, R. Jia, IEEE Trans. Electron Devices 67, 3199 (2020)

    ADS  Google Scholar 

  53. D. Guo, W. Li, D. Wang, B. Meng, D. Fang, Z. Wei, Chin. Phys. B 29, 098504 (2020)

    ADS  Google Scholar 

  54. L. Dong, J. Yu, R. Jia, J. Hu, Y. Zhang, J. Sun, Opt. Mater. Express 9, 1191 (2019)

    ADS  Google Scholar 

  55. R. Zhuo, D. Wu, Y. Wang, E. Wu, C. Jia, Z. Shi, T. Xu, Y. Tian, X. Li, J. Mater. Chem. C 6, 10982 (2018)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Deanship of Scientific Research, Vice Presidency for Graduate Studies and Scientific Research, King Faisal University, Saudi Arabia [Project No. GRANT 5046]. The authors acknowledge the Department of Electronics and Communication Engineering, Manipur Technical University (MTU), for providing the fabrication facilities (funded by SERB under file no. ECR/2018/000834). The authors would also like to acknowledge NIT Nagaland, for research facilities. The authors also acknowledge IIT Roorkee, NIT Durgapur for XPS and SEM, as well as NIT Manipur for XRD measurement.

Author information

Authors and Affiliations

Authors

Contributions

SSS, MWA and FSA conducted the preliminary literature, while SSS and NKS undertook the fabrication, characterization and result analysis. Subsequently, the manuscript was prepared by SSS and NKS. The final manuscript was read and approved by all authors.

Corresponding author

Correspondence to Naorem Khelchand Singh.

Ethics declarations

Conflict of interest

All the authors declare that there are no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S.S., Alam, M.W., Aldughaylibi, F.S. et al. Self-powered photodetector based on Cu2O thin film fabricated using E-beam evaporation technique. Appl. Phys. A 129, 873 (2023). https://doi.org/10.1007/s00339-023-07156-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-07156-1

Keywords

Navigation