Skip to main content
Log in

Low operating temperature of UV photo-activated In-doped ZnO NO2 sensors

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Indium-doped ZnO (IZO) nanopowders with different In loading (1 at.%, 3 at.% and 5 at.%) have been synthesized by the sol–gel method Characterization analysis was carried out for evaluating the morphological and microstructural properties of the synthesized IZO samples. XRD analysis revealed that the IZO nanopowders are polycrystalline and exhibited a hexagonal wurtzite structure. The average crystallites size was found to decrease with the incorporation of indium dopant. Resistive sensors based on the pure and IZO nanopowders have been fabricated and tested towards NO2 monitoring at low concentrations in air in both dark and under ultraviolet (UV) illumination at λ = 380 nm. Results demonstrated that the baseline resistance of the sensors was reduced because of In doping and UV irradiation. Thus, IZnO-based resistive sensors were able to work at near room temperature (T = 50 °C) in presence of UV light, reaching a high gas response S = Rg/Ra of 8.4 towards 5 ppm of NO2 and a limit of detection (LOD) of 250 ppb. These results demonstrate that the developed devices are promising NO2 sensors for practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. X. Chen, J. Hu, P. Chen, M. Yin, F. Meng, Y. Zhang, Sens. Actuat. B Chem. 339, 129902 (2021)

    Google Scholar 

  2. B. Salah, A.I. Ayesh, Mater. Chem. Phys. 266, 124597 (2021)

    Google Scholar 

  3. N. Morati, T. Contaret, S. Gomri, T. Fiorido, J. Seguin, M. Bendahan, Sens. Actuat. B Chem. 334, 129654 (2021)

    Google Scholar 

  4. T.J. Hsueh, S.S. Wu, Sens. Actuat. B Chem. 329, 129201 (2021)

    Google Scholar 

  5. G. Neri, Chemosensors 3, 1–20 (2015)

    MathSciNet  Google Scholar 

  6. C. Zhang, X. Geng, H. Li, P.-J. He, M.-P. Planche, H. Liao, M. Olivier, M. Debliquy, Mater. Res. Bull. 63, 67–71 (2015)

    Google Scholar 

  7. X.C. Li, Q.J. Yu, C.L. Yu, Y.W. Huang, R.Z. Li, J.Z. Wang, F.Y. Guo, Y. Zhang, S.Y. Gao, L.C. Zhao, J. Mater. Chem. A 3, 8076–8082 (2015)

    Google Scholar 

  8. Z. Rafiee, A. Mosahebfard, M.H. Sheikhi, Mater. Sci. Semicond. Process. 115, 105116 (2020)

    Google Scholar 

  9. J. Zhang, X. Liu, G. Neri, N. Pinna, Adv. Mater. 28, 795–831 (2016)

    Google Scholar 

  10. B. Bouchikhi, T. Chludziński, T. Saidi, J. Smulko, N. El Bari, H. Wen, R. Ionescu, Sens. Actuat. B Chem. 320, 128331 (2020)

    Google Scholar 

  11. R. Gao, Z. Ying, W. Sheng, P. Zheng, Mater. Lett. 229, 210–212 (2018)

    Google Scholar 

  12. H. Chen, Y. Liu, C. Xie, J. Wu, D. Zeng, Y. Liao, Ceram. Int. 38, 503–509 (2012)

    Google Scholar 

  13. B. Altun, I. Karaduman Er, A.O. Çağırtekin, A. Ajjaq, F. Sarf, S. Acar, Appl. Phys. A 127, 687 (2021)

    ADS  Google Scholar 

  14. J. Zhang, C. Yang, S. Li, P. Yang, Y. Xi, C. Cai, W. Liu, Appl. Phys. A 127, 176 (2021)

    ADS  Google Scholar 

  15. F.K. Mohamad-Alosfur, N.J. Ridha, Appl. Phys. A 127, 203 (2021)

    ADS  Google Scholar 

  16. R.M. Al-Jarrah, E. Muslem-Kadhem, A.H. Omran-Alkhayatt, Appl. Phys. A 128, 527 (2022)

    ADS  Google Scholar 

  17. T.A. Taha, R. Saad, M. Zayed, M. Shaban, A.M. Ahmed, Appl. Phys. A 129, 115 (2023)

    ADS  Google Scholar 

  18. S. Saini, A. Kumar, S. Ranwa, A.K. Tyagi, Appl. Phys. A 128, 454 (2022)

    ADS  Google Scholar 

  19. Y. Zhang, Z. Dong, H. Jia, Appl. Phys. A 129, 666 (2023)

    ADS  Google Scholar 

  20. Q. Wan, Q.H. Li, Y.J. Chen, Appl. Phys. Lett. 84, 3654–3656 (2004)

    ADS  Google Scholar 

  21. C. Li, Z. Zang, C. Han, Z. Hu, X. Tang, J. Du, Y. Leng, K. Sun, Nano Energy 40, 195–202 (2017)

    Google Scholar 

  22. C. Li, C. Han, Y. Zhang, Z. Zang, M. Wang, X. Tang, J. Du, Sol. Energy Mater. Sol. Cells 172, 341–346 (2017)

    Google Scholar 

  23. H. Wang, S. Cao, B. Yang, H. Li, M. Wang, X. Hu, K. Sun, Z. Zang, Solar RRL 4, 1900363 (2020)

    Google Scholar 

  24. Z. Zang, Appl. Phys. Lett. 112, 042106 (2018)

    ADS  Google Scholar 

  25. A.M. Saeedi, N.H. Alonizan, A.A. Alsaigh, L. Alaya, L. El Mir, M.Z. El-Readi, M. Hjiri, Phys. Status Solidi A 220, 2300162 (2023)

    ADS  Google Scholar 

  26. L. Alaya, A.M. Saeedi, A.A. Alsaigh, M.H.K. Almalki, N.H. Alonizan, M. Hjiri, J. Compos. Sci. 7, 190 (2023)

    Google Scholar 

  27. R. Dhahri, M. Hjiri, L. El-Mir, H. Alamri, A. Bonavita, D. Iannazzo, S.G. Leonardi, G. Neri, J. Sci. Adv. Mater. Dev. 2(1), 34–40 (2017)

    Google Scholar 

  28. E.N. Danial, M. Hjiri, MSh. Abdel-Wahab, N.H. Alonizan, L. El Mir, M.S. Aida, Inorg. Chem. Commun. 122, 108281 (2020)

    Google Scholar 

  29. M. Hjiri, L. El Mir, S.G. Leonardi, A. Pistone, L. Mavilia, G. Neri, Sens. Actuat. B 196, 413–420 (2014)

    Google Scholar 

  30. M. Hjiri, R. Dhahri, K. Omri, L. El Mir, S.G. Leonardi, N. Donato, G. Neri, Mater. Sci. Semicond. Process. 27, 319–325 (2014)

    Google Scholar 

  31. M. Hjiri, R. Dhahri, L. El Mir, A. Bonavita, N. Donato, S.G. Leonardi, G. Neri, J. Alloys Compd. 634, 187–192 (2015)

    Google Scholar 

  32. M.G. Nair, M. Nirmala, K. Rekha, A. Anukaliani, Mater. Lett. 65, 1797 (2011)

    Google Scholar 

  33. H.-Y. Chai, S.-M. Lam, J.-C. Sin, Mater. Lett. 242, 103 (2019)

    Google Scholar 

  34. A.D. Sekar, V. Kumar, H. Muthukumar, P. Gopinath, M. Matheswaran, Eur. Polym. J. 118, 27 (2019)

    Google Scholar 

  35. Z.N. Kayani, H. Bashir, S. Riaz, S. Naseem, Mater. Res. Bull. 115, 121 (2019)

    Google Scholar 

  36. O. Yamamoto, Int. J. Inorg. Mater. 3, 643 (2001)

    Google Scholar 

  37. R. Ebrahimifard, H. Abdizadeh, M.R. Golobostanfard, J. Sol-Gel Sci. Technol. 93, 28 (2020)

    Google Scholar 

  38. G.K. Williamson, H. Hall, Acta Metall. 1, 22 (1953)

    Google Scholar 

  39. C. Manoharan, G. Pavithra, S. Dhanapandian, P. Dhamodharan, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 149, 793 (2015)

    Google Scholar 

  40. K.P. Raj, K. Sadaiyandi, A. Kennedy, S. Sagadevan, J. Mater. Sci. Mater. Electron. 28, 19025–19037 (2017)

    Google Scholar 

  41. S. Dev, P. Kumar, A. Rani, A. Agarwal, R. Dhar, Superlattices Microstruct. 145, 106638 (2020)

    Google Scholar 

  42. A.M. Gsiea, J.P. Goss, P.R. Briddon, R.M. Al-habashi, K.M. Etmimi, K.A.S. Marghani, World Acad. Sci Eng. Technol. 8, 127 (2014)

    Google Scholar 

  43. K. Ravichandran, P. Ravikumar, B. Sakthivel, Appl. Surf. Sci. 287, 323 (2013)

    ADS  Google Scholar 

  44. R. Mohan, K. Ravichandran, A. Nithya, K. Jothivenkatachalam, C. Ravidhas, B. Sakthivel, J. Mater. Sci. Mater. Electron. 25, 2546 (2014)

    Google Scholar 

  45. J. Xuan, G. Zhao, M. Sun, F. Jia, X. Wang, T. Zhou, G. Yin, B. Liu, RSC Adv. 10, 39786–39807 (2020)

    ADS  Google Scholar 

  46. T. Wagner, C.D. Kohl, S. Morandi, C. Malagù, N. Donato, M. Latino, G. Neri, M. Tiemann, Chem. Eur. J. 18, 8216–8223 (2012)

    Google Scholar 

  47. N.D. Chinh, T.T. Hien, L. Van Do, N.M. Hieu, N.D. Quang, S.M. Lee, C. Kim, D. Kim, Sens. Actuat. B Chem. 281, 262–272 (2019)

    Google Scholar 

  48. Q. Zhang, G. Xie, M. Xu, Y. Su, H. Tai, H. Du, Y. Jiang, Sens. Actuat. B Chem. 259, 269–281 (2018)

    Google Scholar 

  49. B. Liu, Y. Luo, K. Li, H. Wang, L. Gao, G. Duan, Adv. Mater. Interfaces 6(12), 1900376 (2019)

    Google Scholar 

  50. C. Zhang, A. Boudiba, P. De Marco, R. Snyders, M.G. Olivier, M. Debliquy, Sens. Actuat. B Chem. 181, 395–401 (2013)

    Google Scholar 

  51. W. Zhang, D. Zhang, Y. Zhang, J. Mater. Sci. Mater. Electron. 31, 6706–6715 (2020)

    Google Scholar 

  52. S.B. Jagadale, V.L. Patil, S.S. Mali, S.A. Vanalakar, C.K. Hong, P.S. Patil, H.P. Deshmukh, J. Alloys Compd. 766, 941–951 (2018)

    Google Scholar 

  53. S. Kailasa-Ganapathi, M. Kaur, M. Shaheera, A. Pathak, S.C. Gadkari, A.K. Debnath, Sens. Actuat. B Chem. 335, 129678 (2021)

    Google Scholar 

  54. C.J. Chang, C.Y. Lin, J.K. Chen, M.H. Hsu, Ceram. Int. 40, 10867–10875 (2014)

    Google Scholar 

  55. S.T. Shishiyanu, T.S. Shishiyanu, O.I. Lupan, Sens. Actuat. B Chem. 107, 379–386 (2005)

    Google Scholar 

  56. Y.H. Zhang, Y.L. Lia, F.L. Gong, K.F. Xie, M. Liu, H.L. Zhang, S.M. Fang, Sens. Actuat. B Chem. 305, 127489 (2020)

    Google Scholar 

  57. S.A. Vanalakar, N.L. Tarwal, A.P. Patil, T.D. Dongale, J.H. Kim, P.S. Patil, Sens. Actuat. A 299, 111611 (2019)

    Google Scholar 

  58. L. Gao, Q. Li, Z. Song, J. Wang, Sens. Actuat. B 71, 179–183 (2000)

    Google Scholar 

  59. K. Omri, J. El Ghoul, A. Alyamani, C. Barthou, L. El Mir, Physica E 53, 48 (2013)

    ADS  Google Scholar 

  60. A. Janotti, C.G. Van de Walle, Rep. Prog. Phys. 72, 126501 (2009)

    ADS  Google Scholar 

  61. P. Sundara-Venkatesh, P. Dharmaraj, V. Purushothaman, V. Ramakrishnan, K. Jeganathana, Sens. Actuat. B 212, 10–17 (2015)

    Google Scholar 

  62. L. Peng, T.-F. Xie, M. Yang, P. Wang, D. Xu, S. Pang, D.-J. Wang, Sens. Actuat. B 131, 660–664 (2008)

    Google Scholar 

Download references

Funding

The authors extend their appreciation to the Deputyship for Research and Innovation, Ministry of Education in Saudi Arabia for funding this research through the project number IFP-IMSIU-2023045. The authors also appreciate the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University (IMSIU) for supporting and supervising this project.

Author information

Authors and Affiliations

Authors

Contributions

MH: data curation, writing and editing. AA: conceptualization, formal analysis. GN reviewing; supervision.

Corresponding author

Correspondence to M. Hjiri.

Ethics declarations

Conflict of interest

Authors have a responsibility to disclose interests that might appear to affect their ability to present data objectively. Readers will benefit from transparency, including knowing authors’ and contributors’ affiliations and interests. Sources of funding for research was disclosed.

Ethical approval

All authors declare that the presented work was original research that has not been published previously, and not under consideration for publication elsewhere, in whole or in part.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hjiri, M., Alkaoud, A. & Neri, G. Low operating temperature of UV photo-activated In-doped ZnO NO2 sensors. Appl. Phys. A 129, 861 (2023). https://doi.org/10.1007/s00339-023-07137-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-07137-4

Keywords

Navigation