Skip to main content
Log in

Effects of sp3 bond and modulation ratios on ultra-thin diamond-like carbon coatings using molecular dynamics nanoindentation

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Diamond-like carbon (DLC) films, which are generally used in the form of protective coatings, have a lot of engineering applications, where they improve surface friction, adhesion, and wear resistance. Hence, it is necessary to understand the correlation between DLC coating parameters and the mechanical properties. The effects of sp3 bond and modulation ratios of DLC coatings on the deformation and mechanical properties are studied using molecular dynamics (MD) nanoindentation simulations. MD simulations allow the analyses of the mechanical deformation and mechanics of nanosystems. The in situ material degradation and local deformation of DLC coatings are examined during nanoindentation. The simulation results show that single-layer DLC with a higher initial sp3 ratio generally has a larger indentation force (higher resistance to indentation), a smaller influence area, and a larger residual depth after unloading. With an increase in initial sp3 ratio, the sp3-sp2 bonding transition of C atoms significantly increases at stages of loading, holding, and unloading. Amorphous carbon/tetrahedral amorphous carbon (a-C/ta-C) bilayers with a smaller modulation ratio and ta-C/a-C bilayers with a larger modulation ratio generally require a larger indentation force. Bilayers have poor overall support when the soft (a-C) layer is the bottom layer, which increases the influence area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of data and materials

The raw/processed data required to reproduce these findings cannot be shared at this time due to legal or ethical reasons.

References

  1. H. Mori, Y. Shibata, S. Araki, T. Imanara, K. Sakamoto, Y. Yama, Process. Eng. 81, 1933 (2014)

    Google Scholar 

  2. S. Wan, D. Li, G.A. Zhang, A.K. Tieu, B. Zhang, Tribol. Int.. Int. 106, 10 (2017)

    Article  Google Scholar 

  3. M. Kano, Tribol. Trans.. Trans. 9(3), 135 (2014)

    Google Scholar 

  4. A.V. Sumant, A.R. Krauss, D.M. Gruen, O. Auciello, A. Erdemir, M. Williams, A.F. Artiles, W. Adams, Tribol. Trans.. Trans. 48(1), 24 (2005)

    Article  Google Scholar 

  5. A.C. Ferrari, Surf. Coat. Technol. 180–181, 190 (2004)

    Article  Google Scholar 

  6. K. Sun, X. Fan, W. Zhang, P. Xue, D. Diao, Carbon 149, 45 (2019)

    Article  Google Scholar 

  7. A.V. Sumant, O. Auciello, M. Liao, O.A. Williams, MRS Bull. 39(6), 511 (2014)

    Article  Google Scholar 

  8. K. Bewilogua, D. Hofmann, Surf. Coat. Technol. 242, 214 (2014)

    Article  Google Scholar 

  9. H. Marunoa, Akio Nishimoto. Surf. Coat. Technol. 354, 134 (2018)

    Google Scholar 

  10. J. Wei, H. Lia, L. Liua, P. Guoa, P. Kea, A. Wang, Surf. Coat. Technol. 374, 317 (2019)

    Article  Google Scholar 

  11. Z. Xu, Y.J. Zheng, F. Jiang, Y.X. Leng, H. Sun, N. Huang, Appl. Surf. Sci. 264, 207 (2013)

    Article  ADS  Google Scholar 

  12. Z.Y. Xu, Y.J. Zheng, H. Sun, Y.X. Leng, N. Huang, IEEE Trans. Plasma Sci. 40, 2261 (2012)

    Article  ADS  Google Scholar 

  13. M.R. Price, A. Ovcharenko, B. Raeymaekers, Tribol. Lett.. Lett. 62, 3 (2016)

    Article  Google Scholar 

  14. P. Wei, M. He, W. Ao, Appl. Phys. A 127, 652 (2021)

    Article  ADS  Google Scholar 

  15. V.T. Tran, T.K. Nguyen, H. Nguyen-Xuan, M.A. Wahab, Thin-Walled Struct. 182, 110267 (2023)

    Article  Google Scholar 

  16. C.L. Thanh, D.N. Khuong, H.L. Minh, S.T. Thanh, P.V. Phuong, A.W. Magd, Physica B Condens. Matter 631, 413726 (2022)

    Article  Google Scholar 

  17. C.L. Thanh, H.L. Minh, A.J.M. Ferreira, A.W. Magd, Compos. Struct. 285, 115189 (2022)

    Article  Google Scholar 

  18. C.L. Thanh, T.N. Nguyen, T.H. Vu, S. Khatir, M.A. Wahab, Eng. Comput.Comput. 38, 449 (2022)

    Article  Google Scholar 

  19. S. Plimpton, J. Comput. Phys.Comput. Phys. 117, 1 (1995)

    Article  ADS  Google Scholar 

  20. A. Stukowski, Model. Simul. Mater. Sci. Eng. 20, 045021 (2012)

    Article  ADS  Google Scholar 

  21. Z. Sha, P. Branicio, Q. Pei, V. Sorkin, Y. Zhang, Comput. Mater. Sci.. Mater. Sci. 67, 146 (2013)

    Article  Google Scholar 

  22. L. Li, M. Xua, W. Songa, A. Ovcharenko, G. Zhanga, D. Jia, Appl. Surf. Sci. 286, 287 (2013)

    Article  ADS  Google Scholar 

  23. N.A. Marks, D.R. McKenzie, B.A. Pailthorpe, M. Bernasconi, M. Parrinello, Phys. Rev. B 54(14), 9703 (1996)

    Article  ADS  Google Scholar 

  24. J. Tersoff, Phys. Rev. B 37, 6991 (1988)

    Article  ADS  Google Scholar 

  25. R. Price, R. Michael, Bart. Acta Mater. 141, 317 (2017)

    Article  ADS  Google Scholar 

  26. V. Zavaleyev, J. Walkowicz, Thin Solid Films 581, 32 (2014)

    Article  ADS  Google Scholar 

  27. J. Song, S. Lee, J. Lee, C.D. Yeo, Tribol. Lett.. Lett. 60, 1 (2015)

    Article  Google Scholar 

  28. M. He, S. Lee, C.D. Yeo, Surf. Coat. Technol. 261, 79 (2015)

    Article  Google Scholar 

  29. S. Logothetidis, S. Kassavetis, C. Charitidis, Y. Panayiotatos, A. Laskarakis, Carbon 42, 1133 (2004)

    Article  Google Scholar 

  30. X. Chen, J. Vlassak, J. Mater. Res. 16, 2974 (2001)

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Science and Technology, Taiwan under grants MOST 111-2221-E-033-034 and 109-2221-992-009-MY3.

Author information

Authors and Affiliations

Authors

Contributions

C-DW: conceptualization, methodology, visualization, supervision, writing- original draft preparation, writing- reviewing and editing. N-YY: conceptualization, methodology, software, data curation, formal analysis.

Corresponding author

Correspondence to Cheng-Da Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

We allow the journal to review all the data, and we confirm the validity of the results. There are no financial relationships. This work was not published previously and it is not submitted to more than one journal. It is also not split up into several parts to submit. No data have been fabricated or manipulated.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, CD., Yeh, NY. Effects of sp3 bond and modulation ratios on ultra-thin diamond-like carbon coatings using molecular dynamics nanoindentation. Appl. Phys. A 129, 839 (2023). https://doi.org/10.1007/s00339-023-07127-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-07127-6

Keywords

Navigation