Skip to main content
Log in

Correlations between structural, dielectric properties, and ab initio calculations in Co-doped ZnO nanoparticles: effect of Co concentration

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This study offers important insights into the impact of incorporating cobalt on a range of characteristics of ZnO nanoparticles. Undoped ZnO and doped Zn1−xCoxO (x = 0.01 and 0.05) were effectively elaborated by the co-precipitation method. It establishes for the first time a full description of physical properties from experimental and theoretical points of view for Co-doped ZnO nanoparticles. The theoretical results studied by means of the Density Functional Theory are correlated with the experimental findings obtained using various techniques. Besides, the structural analysis revealed the formation of the hexagonal wurtzite structure of all the powdered samples with the appearance of the secondary phase ZnCo2O4 for the Zn0.95Co0.05O composition. An increasing trend of the average crystallite size from 26.49 to 53.93 nm was obtained under Co doping effect. Concerning the optical characterization, the band gap energy was found to decline with increasing Co doping concentration. Furthermore, the dielectric analysis was performed at different temperatures in the range frequency 40–107 Hz. An enhancement of the dielectric constant was observed with the addition of Co into ZnO host matrix. Overall, this novel contribution improves the performances of such structures that make them potential candidates for dielectric applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. M. Al Bitar, B. Hassanieh, R. Awad, M. Khalil, Characterization and evaluation of the therapeutic benefits of pure and lanthanides mono- and co-doped zinc oxide nanoparticles. Saudi J Biol Sci 30, 103608–1036719 (2023)

    Google Scholar 

  2. P.S. Vindhya, V.T. Kavitha, Effect of cobalt doping on antimicrobial, antioxidant and photocatalytic activities of CuO nanoparticles. Mater. Sci. Eng. B 289, 116258–116270 (2023)

    Google Scholar 

  3. L. Xu, G. Pan, C. Yu, J. Li, Z. Gong, T. Lu, L. Pan, Co-doped MnO2 with abundant oxygen vacancies as a cathode for superior aqueous magnesium ion storage. Inorg. Chem. Front. 10, 1748–1757 (2023)

    Google Scholar 

  4. Q. Li, L. Jiang, Y. Li, X. Wang, L. Zhao, P. Huang, D. Chen, J. Wang, Enhancement of visible-light photocatalytic degradation of tetracycline by co-doped TiO2 templated by waste tobacco stem silk. Molecules 28, 386–399 (2023)

    Google Scholar 

  5. N. Khlifi, N. Ihzaz, S. Mrabet, A. Alyamani, L. El Mir, X-ray peaks profile analysis, optical and cathodoluminescence investigations of cobalt-doped ZnO nanoparticles. J. Lumin. 245, 118770–118780 (2022)

    Google Scholar 

  6. P. Kumar, P.C. Pandey, Investigations on absorption, photoluminescence and magnetic properties of ZnO: Co nanoparticles. J. Sol Gel Sci. Technol. 80, 342–352 (2016)

    Google Scholar 

  7. C. Karthikeyan, L. Arun, A.S.H. Hameed, K. Gopinath, L. Umaralikahan, G. Vijayaprasath, P. Malathi, Structural, optical, thermal and magnetic properties of nickel calciumand nickel iron co-doped ZnO nanoparticles. J. Mater. Sci. Mater. Electron. 30, 8097–8104 (2019)

    Google Scholar 

  8. H. Saadi, Z. Benzarti, P. Sanguino, Y. Hadouch, D. Mezzane, K. Khirouni, N. Abdelmoula, H. Khemakhem, Improving the optical, electrical and dielectric characteristics of ZnO nanoparticles through (Fe + Al) addition for optoelectronic applications. Appl. Phys. A 128, 691–705 (2022)

    ADS  Google Scholar 

  9. D.P. Benu, A. Andriani, N. Silmi, F.V. Steky, F. Failamani, B. Yuliarto, R. Rakhmata Mukti, V. Suendo, Macroemulsion-mediated synthesis of fibrous ZnO microrods and their surface morphology contribution to the high photocatalytic degradation rate. New J. Chem. 47, 428–442 (2023)

    Google Scholar 

  10. M. Salah, S. Azizi, A. Boukhachem, C. Khaldi, M. Amlouk, J. Lamloumi, Rietveld refinement of X-ray diffraction, impedance spectroscopy and dielectric relaxation of Li-doped ZnO-sprayed thin films. Appl. Phys. A 615, 125–145 (2019)

    Google Scholar 

  11. J. El Ghoul, M. Kraini, L. El Mir, Synthesis of Co-doped ZnO nanoparticles by sol–gel method and its characterization. J. Mater. Sci. Mater. Electron. 26, 2555–2562 (2015)

    Google Scholar 

  12. I. Jabbar, Y. Zaman, K. Althubeiti, S. Al Otaibi, M.Z. Ishaque, N. Rahman, M. Sohail, A. Khan, A. Ullah, T.D. Rosso, Q. Zaman, R. Khan, A. Khan, Diluted magnetic semiconductor properties in TM doped ZnO nanoparticles. RSC Adv. 12, 13456–13463 (2022)

    ADS  Google Scholar 

  13. A. Badawi, M.G. Althobaiti, E.E. Ali, S.S. Alharthi, A.N. Alharbi, A comparative study of the structural and optical properties of transition metals (M = Fe Co, Mn, Ni) doped ZnO films deposited by spray-pyrolysis technique for optoelectronic applications. Opt. Mater. 124, 112055–112061 (2022)

    Google Scholar 

  14. A. Safeen, K. Safeen, M. Shafique, Y. Iqbal, N. Ahmed, M.A.R. Khan, G. Asghar, K. Althubeiti, S. Al Otaibi, G. Ali, W.H. Shah, R. Khan, The effect of Mn and Co dual-doping on the structural, optical, dielectric and magnetic properties of ZnO nanostructures. RSC Adv. 12, 11923–11932 (2022)

    Google Scholar 

  15. R. Selvanayaki, M. Rameshbabu, S. Muthupandi, M. Razia, S.S. Florence, K. Ravichandran, K. Prahba, Structural, optical and electrical conductivity studies of pue and Fe doped Zinc Oxide (ZnO) nanoparticles. Mater. Today Proc. 49, 2628–2631 (2022)

    Google Scholar 

  16. K.V. Karthik, A.V. Raghu, K.R. Reddy, R. Ravishankar, M. Sangeeta, N.P. Shetti, Ch.V. Reddy, Green synthesis of Cu-doped ZnO nanoparticles and its application for the photocatalytic degradation of hazardous organic pollutants. Chemosphere 287, 132081–132090 (2022)

    ADS  Google Scholar 

  17. H. Saadi, Z. Benzarti, P. Sanguino, J. Pina, N. Abdelmoula, J. Seixas de Melo, Enhancing the electrical conductivity and the dielectric features of ZnO nanoparticles through Co doping effect for energy storage applications. J. Mater. Sci. Mater. Electron. 34, 116–131 (2023)

    Google Scholar 

  18. P.S. Vindhya, S. Suresh, S. Kunjikannan, R. Kunjikannan, V.T. Kavitha, Antimicrobial, antioxidant, cytotoxicity and photocatalytic performance of Co doped ZnO nanoparticles biosynthesized using Annona Muricata leaf extract. J. Environ. Health Sci. Eng. 21, 167–185 (2023)

    Google Scholar 

  19. A. Goktas, S. Modanlı, A. Tumbul, A. Kilic, Facile synthesis and characterization of ZnO, ZnO:Co, and ZnO/ZnO: Co nano rod-like homojunction thin films: role of crystallite/grain size and microstrain in photocatalytic performance. J. Alloys Compd. 8931, 62334–62347 (2022)

    Google Scholar 

  20. A. Erba, J. Baima, I. Bush, R. Orlando, R. Dovesi, Large-scale condensed matter DFT simulations: performance and capabilities of the CRYSTAL code. J. Chem. Theory Comput. 13, 5019–5027 (2017)

    Google Scholar 

  21. A.M. Burow, J.E. Bates, F. Furche, H. Eshuis, Analytical first-order molecular properties and forces within the adiabatic connection random phase approximation. J. Chem. Theory Comput. 10, 180–194 (2014)

    Google Scholar 

  22. K. Choudhary, F. Tavazza, Convergence and machine learning predictions of Monkhorst-Pack k-points and plane-wave cut-off in high-throughput DFT calculations. Comput. Mater. Sci. 161, 300–308 (2019)

    Google Scholar 

  23. H. Saadi, F.I.H. Rhouma, Z. Benzarti, Z. Bougrioua, S. Guermazi, K. Khirouni, Electrical conductivity improvement of Fe doped ZnO nanopowders. Mater. Res. Bull. 129, 110884–111095 (2020)

    Google Scholar 

  24. A. Chanda, S. Gupta, M. Vasundhara, S.R. Joshi, G.R. Mutta, J. Singh, Study of structural, optical and magnetic properties of cobalt doped ZnO nanorods. RSC Adv. 7, 50527–50536 (2017)

    ADS  Google Scholar 

  25. P.G. Devi, A.S. Velu, Synthesis, structural and optical properties of pure ZnO and Co doped ZnO nanoparticles prepared by the co-precipitation method. J. Theor. Appl. Phys. 10, 233–240 (2016)

    ADS  Google Scholar 

  26. S.A. Ansari, A. Nisar, B. Fatma, W. Khan, A.H. Naqvi, Investigation on structural, optical and dielectric properties of Co doped ZnO nanoparticles synthesized by gel-combustion route. Mater. Sci. Eng. B 177, 428–435 (2012)

    Google Scholar 

  27. N.M. Basith, J.J. Vijaya, L.J. Kennedy, M. Bououdina, S. Jenefar, V. Kaviyarasan, Co-doped ZnO nanoparticles: structural, morphological, optical, magnetic and antibacterial studies. J. Mater. Sci. Technol. 11, 1108–1117 (2014)

    Google Scholar 

  28. A. Mahroug, S. Boudjadar, S. Hamrit, L. Guerbous, Structural, morphological and optical properties of undoped and Co-doped ZnO thin films prepared by sol–gel process. J. Mater. Sci. Mater. Electron. 25, 4967–4974 (2014)

    Google Scholar 

  29. A. Toghan, A. Modwi, A.M. Mostafa, A.I. Alakhras, M. Khairy, K.K. Taha, Insight of yttrium doping on the structural and dielectric characteristics of ZnO nanoparticles. J. Mater. Sci. Mater. Electron. 33, 18167–18179 (2022)

    Google Scholar 

  30. S.E.L. Kossi, Ch. Rayssi, A.H. Dhahri, J. Dhahri, K. Khirouni, High dielectric constant and relaxor behavior in La0.7 Sr0.25 Na0.05 Mn0.8 Ti0.2O3 manganite. J. Alloys Compd. 767, 456–463 (2018)

    Google Scholar 

  31. M.B. Abdessalem, S. Chkoundali, A. Oueslati, A. Aydi, AC conductivity and phase transition of the BST–BFO ceramic doped with Yb. RSC Adv. 12, 27154–27161 (2022)

    ADS  Google Scholar 

  32. A. Khlifi, R. Hanen, A. Mleiki, H. Rahmouni, N. Guermazi, K. Khirouni, A. Cheikhrouhou, Investigations of electrical properties of Pr0.65Ca0.25Cd0.1MnO3 ceramic. Eur. Phys. J. Plus 135, 790–804 (2020)

    Google Scholar 

  33. H. Gouadria, M. Smari, T. Mnasri, J. Necib, J.L. Sanchez, P. Marín, A.P. Jamale, R. Ben Younes, Implementing a sol-gel route to adjust the structural and dielectric characteristics of Bi and Fe co-doped BaTiO3 ceramics. Inorg. Chem. Commun. 147, 110241–110262 (2023)

    Google Scholar 

  34. J. Singh, R.C. Singh, Enhancement of optical, dielectric and transport properties of (Sm, V) co-doped ZnO system and structure-property correlations. Ceram. Int. 47, 10611–10627 (2021)

    Google Scholar 

  35. F. Ahmad, A. Maqsood, Influence of nickel dopant on impedance, dielectric and optical properties of ZnO nanoparticles at low temperatures. J. Mater. Sci. Mater. Electron. 33, 12674–12700 (2022)

    Google Scholar 

  36. S. Aydogan, A. Kocyigit, B.B. Cirak, E. Erdogan, M. Yilmaz, The electrical and dielectric characterization of the Co/ZnO-Rods/p-Si heterostructure depending on the frequency. J. Mater. Sci. Mater. Electron. 33, 6059–6069 (2022)

    Google Scholar 

  37. K. Omri, A. Bettaibi, K. Khirouni, L. El Mir, The optoelectronic properties and role of Cu concentration on the structural and electrical properties of Cu doped ZnO nanoparticles. Phys. B Condens. Matter. 537, 167–175 (2018)

    ADS  Google Scholar 

  38. T. Das, B.K. Das, K. Parashar, R. Kumar, H.K. Choudhary, A.V. Anupama, B. Sahoo, P.K. Sahoo, S.K.S. Parasha, Effect of Sr-doping on sinterability, morphology, structure, photocatalytic activity and AC conductivity of ZnO ceramics. J. Mater. Sci. Mater. Electron. 28, 13587–13595 (2017)

    Google Scholar 

  39. R. Mguedla, A.B.J. Kharrat, M. Saadi, K. Khirouni, N. Chniba-Boudjada, W. Boujelben, Structural, electrical, dielectric and optical properties of PrCrO3 orthochromite. J. Alloys Compd. 812, 152130–152140 (2020)

    Google Scholar 

  40. A.B.J. Kharrat, K. Khirouni, W. Boujelben, Improving the physical properties of polycrystallinedeficient Pr0.8Sr0.2-x-xMnO3 (0≤x≤0.2) compounds for electronic devices. J. Mater. Sci. Mater. Electron. 33, 18632–18657 (2022)

    Google Scholar 

  41. B. Aakansha, S. Deka, D. Ravi, Pamu, Impedance spectroscopy and ac conductivity mechanism in Sm doped Yttrium Iron Garnet, Ceramics International. Ceram. Int. 43, 10468–10477 (2017)

    Google Scholar 

  42. S.B. Yahya, R. Barillé, B. Louati, Synthesis, optical and ionic conductivity studies of a lithium cobalt germanate compound. RSC Adv. 12, 6602–6614 (2022)

    ADS  Google Scholar 

  43. M. Jebli, J. Dhahri, N. Hamdaoui, H. Belmabrouk, A. Bajahzar, M.L. Bouazizi, Nanoarchitectonics of lead-free Ba0.97La0.02Ti(1-x)Nb4x/5O3 based ceramic with dielectrical and Raman scattering properties studies. J. Mater. Sci. Mater. Electron. 32, 3708–3724 (2022)

    Google Scholar 

  44. M. Ben Abdessalem, A. Aydi, N. Abdelmoula, Raman scattering, structural, electrical studies and conduction mechanism of Ba0.9Ca0.1Ti0.95Zr0.05O3 ceramic. J. Alloys Compd. 774, 685–693 (2019)

    Google Scholar 

  45. R. Chtourou, B. Louati, K. Guidara, Structural and ac conductivity studies of sodium tetralead triphosphate compound. J. Alloys Compd. 732, 286–292 (2018)

    Google Scholar 

  46. A. Rahal, S.M. Borchani, K. Guidara, M. Megdiche, Studies of electric, dielectric, and conduction mechanism of LiNiV0.5P0.5O4. J. Alloys Compd. 735, 1885–1892 (2018)

    Google Scholar 

  47. T.A. Abdel-Baset, M. Belhaj, Structural characterization, dielectric properties and electrical conductivity of ZnO nanoparticles synthesized by co-precipitation route. Phys. B Condens. Matter. 616, 413130–4131305 (2021)

    Google Scholar 

  48. C.J. Raj, G. Paramesh, B. Shri Prakash, K.R.S. Preethi Meher, K.B.R. Varma, Origin of giant dielectric constant and conductivity behavior in Zn1-xMgxO (0 ≤x ≤0.1) ceramics. Mater. Res. Bull. 74, 1–8 (2016)

    Google Scholar 

  49. Y. Zulfiqar, J. Yuan, W. Yang, Z. Wang, J. Ye, Lu, Structural, dielectric and ferromagnetic behavior of (Zn, Co) co-doped SnO2 nanoparticles. Ceram. Int. 42, 17128–17136 (2016)

    Google Scholar 

  50. P. Norouzzadeh, Kh. Mabhouti, M.M. Golzan, R. Naderali, Effect of Mn-substitution on impedance spectroscopy and magnetic properties of Al-doped ZnO nanoparticles. Optik 31, 1–32 (2020)

    Google Scholar 

  51. C. Belkhaoui, N. Mzabi, H. Smaoui, Investigations on structural, optical and dielectric properties of Mn doped ZnO nanoparticles synthesized by co-precipitation method. Mater. Res. Bull. 111, 70–79 (2019)

    Google Scholar 

Download references

Acknowledgements

Dr. Zohra Benzarti gratefully acknowledges her support by the project n° 7225-ILLIANCE. Projeto apoiado pelo PRR-Plano de Recuperação e Resiliência e pelos Fundos Europeus Next Generation EU, no sequência do AVISO N.° 02/C05 -i01/2022, Componente 5 – Capitalização e Inovação Empresarial – Agendas Mobilizadores para a Inovação Empresarial. She also acknowledges her support by national funds through FCT- Fundação para a Ciência e a Tecnologia, under the project UID/EMS/00285/2020. The authors gratefully acknowledge the financial support of DGRST.

Author information

Authors and Affiliations

Authors

Contributions

HS: investigation, data curation, formal analysis, visualization, writing—original draft, writing—review and editing. OK: investigation, data curation, formal analysis, visualization, writing—original draft, writing—review and editing. TL: resources. ZB: conceptualization, methodology, formal analysis, validation, writing—review and editing, writing—original draft, supervision.

Corresponding author

Correspondence to Hajer Saadi.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 13 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saadi, H., Khaldi, O., Larbi, T. et al. Correlations between structural, dielectric properties, and ab initio calculations in Co-doped ZnO nanoparticles: effect of Co concentration. Appl. Phys. A 129, 848 (2023). https://doi.org/10.1007/s00339-023-07126-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-07126-7

Keywords

Navigation