Skip to main content
Log in

Synthesis and characterization of (La, Cu) co-doped CeO2 nanomaterials used as electrolyte material in SOFC applications

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This paper, it is aimed that nanometer-sized powders can be successfully prepared by using the sol–gel process so that sintering temperatures can be reduced and they can be used as suitable electrolyte candidate materials for medium-temperature SOFC applications. Fort his, bare CeO2 (cerium dioxide), which has not yet been encountered in the literature, and La,Cu co-doped CeO2 nanoparticles with different molar ratios (1%, 5%, and 10%) were synthesized as electrolyte material using the sol–gel method for intermediate-temperature solid oxide fuel cells (IT-SOFCs) applications. The synthesized samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), UV–Vis spectroscopy, and particle size analysis techniques. In order to examine the effect of doping, the structural, morphological, and optical properties of bare cerium oxide and doped cerium oxide powders were compared. With the doping process, reductions in average particle sizes were observed, and it was determined that the sample with the lowest average particle size was 5% (La, Cu) co-doped CeO2. It has been confirmed by XRD and SEM/EDX that bare CeO2 and co-doped CeO2 powder synthesized have been successfully achieved by the sol–gel technique. The results show that the La,Cu co-doped CeO2 sample is promising as an electrolyte material in SOFC applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. S. Biswas, S.S. Rathore, A.P. Kulkarni, S. Giddey, S. Bhattacharya, Energies (2021). https://doi.org/10.3390/en14154517

    Article  Google Scholar 

  2. J.W. Fergus, J. Power. Sources (2006). https://doi.org/10.1016/j.jpowsour.2006.06.062

    Article  Google Scholar 

  3. D.A. Katrana, G.R. Kumar, C. Prerna, B.K. Amarsinht, V. Sabarinathan, T.R. Rajesekaran, J. Mater. Sci. Electro. (2020). https://doi.org/10.1007/s10854-020-03612-3

    Article  Google Scholar 

  4. Y. Zheng, H. Gu, H. Chen, L. Gao, X. Zhu, L. Guo, Mater. Res. Bull. (2009). https://doi.org/10.1016/j.materresbull.2008.09.021

    Article  Google Scholar 

  5. F. Aydin, I. Demir, M.D. Mat, Eng. Sci. Technol. Int. J. (2014). https://doi.org/10.1016/j.jestch.2014.02.003

    Article  Google Scholar 

  6. B. Xu, H. Yang, Q. Zhang, S. Yuan, A. Xie, M. Zhang, T. Ohno, ChemCatChem (2020). https://doi.org/10.1002/cctc.201902309

    Article  Google Scholar 

  7. S. Chahal, S. Singh, A. Kumar, P. Kumar, Vacuum (2020). https://doi.org/10.1016/j.vacuum.2020.109395

    Article  Google Scholar 

  8. E. Kumar, P. Selvarajan, D. Muthuraj, Mater. Res. (2013). https://doi.org/10.1590/S1516-14392013005000021

    Article  Google Scholar 

  9. X. Hou, Q. Lu, X. Wang, J. Sci, Adv. Mater. Devices. (2017). https://doi.org/10.1016/j.jsamd.2017.02.006

    Article  Google Scholar 

  10. M. Mousavi-Kamazani, F. Azizi, Ultrason. Sonochem.. Sonochem. (2019). https://doi.org/10.1016/j.ultsonch.2019.104695

    Article  Google Scholar 

  11. P. Ebrahimi, A. Kumar, M. Khraisheh, Catalysts (2022). https://doi.org/10.3390/catal12101101

    Article  Google Scholar 

  12. M. Michalska, K. Lemański, A. Sikora, Heliyon. (2021). https://doi.org/10.1016/j.heliyon.2021.e06958

    Article  Google Scholar 

  13. B. Wang, B. Zhu, S. Yun, W. Zhang, C. Xia, M. Afzal, H. Wang, NPG Asia Mater. (2019). https://doi.org/10.1038/s41427-019-0152-8

    Article  Google Scholar 

  14. Y. Liu, H. Qin, M. Li, J. Cheng, C. Tang, J. Xiao, Y. Xie, Ionics (2022). https://doi.org/10.1007/s11581-022-04677-2

    Article  Google Scholar 

  15. C. Dejoie, Y. Yu, F. Bernardi, N. Tamura, M. Kunz, M.A. Marcus, Z. Liu, Z. ACS Appl. Mater. Interfaces (2020). https://doi.org/10.1021/acsami.0c08284

    Article  Google Scholar 

  16. A. Solovyev, A. Shipilova, E. Smolyanskiy, S. Rabotkin, V. Semenov, Membranes (2022). https://doi.org/10.3390/membranes12090896

    Article  Google Scholar 

  17. F. Hossam, A.M. Elseman, M. Rasly, R.M. Mahani, S.A. Sayed, M.M. Rashad, J. Mater. Sci. Mater. Electron. (2023). https://doi.org/10.1007/s10854-023-10901-0

    Article  Google Scholar 

  18. Y. Zheng, M. Zhou, L. Ge, S. Li, H. Chen, L. Guo, J. Alloys Compd. (2011). https://doi.org/10.1016/j.jallcom.2010.09.203

    Article  Google Scholar 

  19. D. Chen, G. Yang, Z. Shao, F. Ciucci, Electrochem. Commun.. Commun. (2013). https://doi.org/10.1016/j.elecom.2013.08.017

    Article  Google Scholar 

  20. D.E. Puente-Martínez, J.A. Díaz-Guillén, S.M. Montemayor, J.C. Díaz-Guillén, O. Burciaga-Díaz, M.E. Bazaldúa-Medellín, A.F. Fuentes, Int. J. Hydrog. EnergyHydrog. Energy (2020). https://doi.org/10.1016/j.ijhydene.2019.11.032

    Article  Google Scholar 

  21. F. Zhang, W. Chan, J.E. Spanier, E. Apak, Q. Jin, R.D. Robinson, I.P. Herman, Appl. Phys. Lett. (2002). https://doi.org/10.1063/1.1430502

    Article  Google Scholar 

  22. S. Liang, E. Broitman, Y. Wang, A. Cao, G. Veser, J. Mater. Sci. (2011). https://doi.org/10.1007/s10853-010-5168-y

    Article  Google Scholar 

  23. G. Killivalavan, B. Sathyaseelan, G. Kavitha, I. Baskarann, K. Senthilnathan, D. Sivakumar, M. Maaza, MRS Adv. (2020). https://doi.org/10.1557/adv

    Article  Google Scholar 

  24. G. Killivalavan, A.C. Prabakar, K.C.B. Naidu, B. Sathyaseelan, G. Rameshkumar, D. Sivakumar, B.R. Rao, Biointerface Res. Appl. Chem. (2020). https://doi.org/10.33263/BRIAC102.306311

    Article  Google Scholar 

  25. P.P. Tumkur, N.K. Gunasekaran, B.R. Lamani, N. Nazario-Bayon, K. Prabhakaran, J.C. Hall, G.T. Ramesh, Nanomanufacturing (2021). https://doi.org/10.3390/nanomanufacturing1030013

    Article  Google Scholar 

  26. Q. Sun, Z. Fu, Z. Yang, Ceram. Int. Int. (2018). https://doi.org/10.1016/j.ceramint.2017.11.149

    Article  Google Scholar 

  27. P. Makuła, M. Pacia, W. Macyk, J. Phys. Chem. Lett. (2018). https://doi.org/10.1021/acs.jpclett.8b02892

    Article  Google Scholar 

  28. P.U. Aparna, N.K. Divya, P.P. Pradyumnan, J Mater Sci Chem Eng. (2016). https://doi.org/10.4236/msce.2016.42009

    Article  Google Scholar 

  29. E. Jothinathan, K. Vanmeensel, J. Vleugels, O.V. Biest, J. Eur. Ceram. Soc. Eur Ceram Soc. (2010). https://doi.org/10.1016/j.jeurceramsoc.2010.01.003

    Article  Google Scholar 

  30. F.A. Unal, S. Ok, M. Unal, S. Topal, K. Cellat, F. Şen, J. Mol. Liq. (2020). https://doi.org/10.1016/j.molliq.2019.112177

    Article  Google Scholar 

  31. E. Moghaddam, A.A. Youzbashi, A. Kazemzadeh, M.J. Eshraghi, Appl. Surf. Sci. (2015). https://doi.org/10.1016/j.apsusc.2015.03.207

    Article  Google Scholar 

  32. S. Samiee, E.K. Goharshadi, Mater. Res. Bull. (2012). https://doi.org/10.1016/j.materresbull.2011.12.058

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Alanya Alaaddin Keykubat University, Scientific Research Projects Coordinatorship under Project Number 2022-02-03-LAP05. The author would like to thank undergraduate student Kübra Nur Küçük for her help during the experimental phase.

Funding

The author did not receive support from any organization for the submitted work. No funding was received to assist with the preparation of this manuscript. No funding was received for conducting this study. No funds, grants, or other support was received.

Author information

Authors and Affiliations

Authors

Contributions

The author contributed to all stages of the study.

Corresponding author

Correspondence to Fatma Aydın Ünal.

Ethics declarations

Conflict of interest

No financial interest or any conflict of interest exists.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aydın Ünal, F. Synthesis and characterization of (La, Cu) co-doped CeO2 nanomaterials used as electrolyte material in SOFC applications. Appl. Phys. A 129, 817 (2023). https://doi.org/10.1007/s00339-023-07114-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-07114-x

Keywords

Navigation