Skip to main content
Log in

Facile engineering of Co3O4/Pr2O3 nanostructure for boosted oxygen evolution reaction

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Water electrolysis is a propitious strategy to overcome the exceeding energy crisis by producing renewable and green hydrogen fuel. However, the practical application of this process is limited due to the inadequacy of earth-rich, economical, and efficient electrocatalysts for carrying out kinetically more sluggish oxygen evolution reactions (OER). In the present research, a simple sol–gel method was employed to produce Co3O4/Pr2O3 nanocomposite material, which provides exceptional electrical conductivity and lesser charge transfer resistance of mixed-valence cations. The fabricated nanomaterials were analyzed using various scientific techniques, including X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), and energy dispersive X-ray spectroscopy (EDX) to determine their crystal structure, morphology, elemental composition, and oxidation states. To investigate the water oxidation capability and steadiness of the modified Co3O4/Pr2O3 electrode material in alkaline conditions, cyclic voltammetry (CV), linear sweep voltammetry (LSV), and constant current chronoamperometry (CA) were utilized. These outcomes revealed that the resultant nanocomposite exhibits a minimal overpotential around 257 mV and a lower Tafel slope around 78 mVdec−1 at a benchmark current density of 10 mAcm−2. In addition, the alkaline solution reliability of the electrocatalysts was examined and confirmed to be steady for 24 h via chronoamperometry. The extraordinary electrocatalytic achievement of Co3O4/Pr2O3 is ascribed to its structural synergistic effect, which encourages the oxygen evolution activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M.H. Jameel, S. Saleem, M. Hashim, M.S. Roslan, H.H.N. Somaily, M.M. Hessin, Z.M. El-Bahy, M.G.B. Ashiq, M.Q. Hamzah, A.H. Jabbar, A comparative study on characterizations and synthesis of pure lead sulfide (PbS) and Ag-doped PbS for photovoltaic applications. Nanotechnol. Rev. 10(1), 1484–1492 (2021)

    Article  Google Scholar 

  2. S. Saleem, M. Irfan, M.Y. Naz, S. Shukrullah, M.A. Munir, M. Ayyaz, A.S. Alwadie, S. Legutko, J. Petrů, S. Rahman, Investigating the impact of Cu2+ doping on the morphological, structural, optical, and electrical properties of CoFe2O4 nanoparticles for use in electrical devices. Materials 15(10), 3502 (2022)

    Article  ADS  Google Scholar 

  3. N. Abbas, J.-M. Zhang, S. Nazir, M.T. Ahsan, S. Saleem, U. Ali, N. Akhtar, M. Ikram, R. Liaqat, A comparative study of structural, vibrational mode, optical and electrical properties of pure nickel selenide (NiSe) and Ce-doped NiSe nanoparticles for electronic device applications. Physica B 649, 414471 (2023)

    Article  Google Scholar 

  4. K. Mazloomi, C. Gomes, Hydrogen as an energy carrier: prospects and challenges. Renew. Sustain. Energy Rev. 16(5), 3024–3033 (2012)

    Article  Google Scholar 

  5. L.P. Bicelli, Hydrogen: a clean energy source. Int. J. Hydrogen Energy 11(9), 555–562 (1986)

    Article  Google Scholar 

  6. A. Midilli, M. Ay, I. Dincer, M.A. Rosen, On hydrogen and hydrogen energy strategies: I: current status and needs. Renew. Sustain. Energy Rev. 9(3), 255–271 (2005)

    Article  Google Scholar 

  7. J.M. Petersen, F.U. Zielinski, T. Pape, R. Seifert, C. Moraru, R. Amann, S. Hourdez, P.R. Girguis, S.D. Wankel, V. Barbe, Hydrogen is an energy source for hydrothermal vent symbioses. Nature 476(7359), 176–180 (2011)

    Article  ADS  Google Scholar 

  8. K.V. Rao, C. Sunandana, Co3O4 nanoparticles by chemical combustion: effect of fuel to oxidizer ratio on structure, microstructure and EPR. Solid State Commun. 148(1–2), 32–37 (2008)

    ADS  Google Scholar 

  9. F. Zhou, Y. Zhou, G.-G. Liu, C.-T. Wang, J. Wang, Recent advances in nanostructured electrocatalysts for hydrogen evolution reaction. Rare Met. 40, 3375–3405 (2021)

    Article  Google Scholar 

  10. P. Zhou, I.A. Navid, Y. Ma, Y. Xiao, P. Wang, Z. Ye, B. Zhou, K. Sun, Z. Mi, Solar-to-hydrogen efficiency of more than 9% in photocatalytic water splitting. Nature 613(7942), 66–70 (2023)

    Article  ADS  Google Scholar 

  11. H. Fan, J. Jia, D. Wang, J. Fan, J. Wu, J. Zhao, X. Cui, High-valence Zr-incorporated nickel phosphide boosting reaction kinetics for highly efficient and robust overall water splitting. Chem. Eng. J. 455, 140908 (2023)

    Article  Google Scholar 

  12. F. Zeng, C. Mebrahtu, L. Liao, A.K. Beine, R. Palkovits, Stability and deactivation of OER electrocatalysts: a review. J. Energy Chem. 69, 301–329 (2022)

    Article  Google Scholar 

  13. Y. Lee, J. Suntivich, K.J. May, E.E. Perry, Y. Shao-Horn, Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions. J. Phys. Chem. Lett. 3(3), 399–404 (2012)

    Article  Google Scholar 

  14. K.A. Stoerzinger, L. Qiao, M.D. Biegalski, Y. Shao-Horn, Orientation-dependent oxygen evolution activities of rutile IrO2 and RuO2. J. Phys. Chem. Lett. 5(10), 1636–1641 (2014)

    Article  Google Scholar 

  15. Z. Ma, Y. Zhang, S. Liu, W. Xu, L. Wu, Y.-C. Hsieh, P. Liu, Y. Zhu, K. Sasaki, J.N. Renner, Reaction mechanism for oxygen evolution on RuO2, IrO2, and RuO2@ IrO2 core-shell nanocatalysts. J. Electroanal. Chem. 819, 296–305 (2018)

    Article  Google Scholar 

  16. T. Munawar, S. Yasmeen, M. Hasan, K. Mahmood, A. Hussain, A. Ali, M. Arshad, F. Iqbal, Novel tri-phase heterostructured ZnO–Yb2O3–Pr2O3 nanocomposite; structural, optical, photocatalytic and antibacterial studies. Ceram. Int. 46(8), 11101–11114 (2020)

    Article  Google Scholar 

  17. F. Song, L. Bai, A. Moysiadou, S. Lee, C. Hu, L. Liardet, X. Hu, Transition metal oxides as electrocatalysts for the oxygen evolution reaction in alkaline solutions: an application-inspired renaissance. J. Am. Chem. Soc. 140(25), 7748–7759 (2018)

    Article  Google Scholar 

  18. J. Wang, H. Kong, J. Zhang, Y. Hao, Z. Shao, F. Ciucci, Carbon-based electrocatalysts for sustainable energy applications. Prog. Mater. Sci. 116, 100717 (2021)

    Article  Google Scholar 

  19. B. Han, A. Grimaud, L. Giordano, W.T. Hong, O. Diaz-Morales, L. Yueh-Lin, J. Hwang, N. Charles, K.A. Stoerzinger, W. Yang, Iron-based perovskites for catalyzing oxygen evolution reaction. J. Phys. Chem. C 122(15), 8445–8454 (2018)

    Article  Google Scholar 

  20. G.K. Wertheim, Hyperfine structure of divalent and trivalent Fe 57 in cobalt oxide. Phys. Rev. 124(3), 764 (1961)

    Article  ADS  Google Scholar 

  21. A.Q. Mugheri, A. Tahira, U. Aftab, A.L. Bhatti, R. Lal, M.A. Bhatti, G.Z. Memon, A.B. Mallah, M.A. Abassi, A. Nafady, Chemically coupled cobalt oxide nanosheets decorated onto the surface of multiwall carbon nanotubes for favorable oxygen evolution reaction. J. Nanosci. Nanotechnol. 21(4), 2660–2667 (2021)

    Article  Google Scholar 

  22. J. Wu, Z. Ren, S. Du, L. Kong, B. Liu, W. Xi, J. Zhu, H. Fu, A highly active oxygen evolution electrocatalyst: ultrathin CoNi double hydroxide/CoO nanosheets synthesized via interface-directed assembly. Nano Res. 9, 713–725 (2016)

    Article  Google Scholar 

  23. T. Munawar, F. Mukhtar, M.S. Nadeem, S. Manzoor, M.N. Ashiq, M. Riaz, S. Batool, M. Hasan, F. Iqbal, Facile synthesis of rare earth metal dual-doped Pr2O3 nanostructures: enhanced electrochemical water-splitting and antimicrobial properties. Ceram. Int. 48(13), 19150–19165 (2022)

    Article  Google Scholar 

  24. T. Zhang, S. Zhao, C. Zhu, J. Shi, C. Su, J. Yang, M. Wang, J. Li, J. Li, P. Liu, Rational construction of high-active Co3O4 electrocatalysts for oxygen evolution reaction. Nano Res. 16(1), 624–633 (2022)

    Article  ADS  Google Scholar 

  25. X. Xu, Y. Chen, W. Zhou, Z. Zhu, C. Su, M. Liu, Z. Shao, A perovskite electrocatalyst for efficient hydrogen evolution reaction. Adv. Mater. Processes 28(30), 6442–6448 (2016)

    Article  Google Scholar 

  26. S. Dimitrovska-Lazova, S. Aleksovska, V. Mirceski, Pecovska-Gjorgjevich, Correlation between composition, electrical and electrochemical properties of LnCo1–xCrxO3 (Ln= Pr, Gd and x = 0, 0.5 and 1) perovskites. J. Solid State Electrochem.Electrochem. 23, 861–870 (2019)

    Article  Google Scholar 

  27. J. Béjar, L. Álvarez-Contreras, J. Ledesma-García, N. Arjona, L. Arriaga, Electrocatalytic evaluation of Co3O4 and NiCo2O4 rosettes-like hierarchical spinel as bifunctional materials for oxygen evolution (OER) and reduction (ORR) reactions in alkaline media. J. Electroanal. Chem. 847, 113190 (2019)

    Article  Google Scholar 

  28. Y. Song, X. Zhao, Z.-H. Liu, Surface selenium doped hollow heterostructure/defects Co-Fe sulfide nanoboxes for enhancing oxygen evolution reaction and supercapacitors. Electrochim. Acta 374, 137962 (2021)

    Article  Google Scholar 

  29. Q. Zhao, Z. Yan, C. Chen, J. Chen, Spinels: controlled preparation, oxygen reduction/evolution reaction application, and beyond. Chem. Rev. 117(15), 10121–10211 (2017)

    Article  Google Scholar 

  30. H. Ogasawara, A. Kotani, R. Potze, G. Sawatzky, B. Thole, Praseodymium 3d-and 4d-core photoemission spectra of Pr2O3. Phys. Rev. B 44(11), 5465 (1991)

    Article  ADS  Google Scholar 

  31. A. Mekki, K.A. Ziq, D. Holland, C. McConville, Magnetic properties of praseodymium ions in Na2O–Pr2O3–SiO2 glasses. J. Magn. Magn. Mater. 260(1–2), 60–69 (2003)

    Article  ADS  Google Scholar 

  32. E. Tsuji, A. Imanishi, K.-I. Fukui, Y. Nakato, Electrocatalytic activity of amorphous RuO2 electrode for oxygen evolution in an aqueous solution. Electrochim. Acta 56(5), 2009–2016 (2011)

    Article  Google Scholar 

  33. C.C. McCrory, S. Jung, J.C. Peters, T.F. Jaramillo, Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J. Am. Chem. Soc. 135(45), 16977–16987 (2013)

    Article  Google Scholar 

  34. Y. Duan, N. Dubouis, J. Huang, D.A. Dalla Corte, V. Pimenta, Z.J. Xu, A. Grimaud, Revealing the impact of electrolyte composition for co-based water oxidation catalysts by the study of reaction kinetics parameters. ACS Catal.Catal. 10(7), 4160–4170 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

K.F.F express appreciation to the Deanship of Scientific Research at King Khalid University Saudi Arabia for funding through research groups program under grant number R.G.P. 2/580/44.

Author information

Authors and Affiliations

Authors

Contributions

All have done equal contribution.

Corresponding authors

Correspondence to Niaz Ahmad Niaz or Muhammad Naeem Ashiq.

Ethics declarations

Conflict of interest

There is no conflict of interest by any form for this manuscript.

Ethical standards

Yes this article compliance with ethical standards of journal.

Research data policy and data availability statements

The data sets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1875 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saleem, M.K., Jabbour, K., Niaz, N.A. et al. Facile engineering of Co3O4/Pr2O3 nanostructure for boosted oxygen evolution reaction. Appl. Phys. A 129, 833 (2023). https://doi.org/10.1007/s00339-023-07101-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-07101-2

Keywords

Navigation