Skip to main content
Log in

Tuning the heat dissipated by polyacrylic acid (PAA)-coated magnetite nanoparticles under alternating magnetic field for hyperthermia applications

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Highly monodispersed and colloidal magnetite nanoparticles (MNPs) with controlled particle sizes and biocompatible polymer coatings have recently revealed a good ability for magnetic fluid hyperthermia (MFH) applications. Herein, we focused on probing the thermal abilities of polyacrylic acid (PAA)-decorated MNPs (PMNPs) under alternating magnetic field (AMF) with different frequencies and field amplitudes. The as-prepared PMNPs were fully characterized using various techniques including TEM, FTIR, DLS, TGA, and VSM. The results illustrated uniform colloidal well-dispersed ultra-small MNPs (core = 5 nm) with hydrodynamic sizes of (DH = 60 nm) and superparamagnetic behaviour. PAA-MNPs in water showed a good self-heating efficiencies, particularly when minimal concentration of MNPs (2.5 mg/mL) were employed. Heating profiles depicted that hyperthermia temperatures (42 °C) can be reached in relatively short times and could rise up to 53 °C. Heating abilities and SAR values as functions of frequency, field amplitude of AMF and concentration were systematically investigated. A remarkable increase of SAR with decreasing concentration and increasing frequency as well as amplitude was found. For instance, SAR was found to be 36 W/g and 6.75 for concentration of 2.5 and 10 mg/ml, respectively. Thus, it was concluded that by altering main MFH parameters, the heat can be effectively tuned for possible use in magnetic hyperthermia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the paper.

References

  1. P.E. Le Renard, O. Jordan, A. Faes, A. Petri-Fink, H. Hofmann, D. Rüfenacht, F. Bosman, F. Buchegger, E. Doelker, The in vivo performance of magnetic particle-loaded injectable, in situ gelling, carriers for the delivery of local hyperthermia. Biomaterials 31, 691–705 (2010)

    Article  Google Scholar 

  2. W. Wu, C.Z. Jiang, V.A.L. Roy, Designed synthesis and surface engineering strategies of magnetic iron oxide nanoparticles for biomedical applications. Nanoscale 8, 19421–19474 (2016)

    Article  Google Scholar 

  3. D. Hensley, Z.W. Tay, R. Dhavalikar, B. Zheng, P. Goodwill, C. Rinaldi, S. Conolly, Combining magnetic particle imaging and magnetic fluid hyperthermia in a theranostic platform. Phys. Med. Biol. 62, 3483–3500 (2017)

    Article  Google Scholar 

  4. O.M. Lemine, Chapter 7—magnetic hyperthermia therapy using hybrid magnetic nanostructures, in Hybrid nanostructures for cancer theranostics. ed. by B.R. Ashok, N. Thorat (Elsevier, Amsterdam, 2019), pp.125–138

    Chapter  Google Scholar 

  5. A. Włodarczyk, S. Gorgoń, A. Radoń, K. Bajdak-Rusinek, Magnetite nanoparticles in magnetic hyperthermia and cancer therapies: challenges and perspectives. Nanomaterials (Basel, Switzerland) 12, 1807 (2022)

    Article  Google Scholar 

  6. X.L. Liu, H.M. Fan, J.B. Yi, Y. Yang, E.S.G. Choo, J.M. Xue, D.D. Fan, J. Ding, Optimization of surface coating on Fe3O4 nanoparticles for high performance magnetic hyperthermia agents. J. Mater. Chem. 22, 8235–8244 (2012)

    Article  Google Scholar 

  7. C. Pucci, A. Degl’Innocenti, M. Belenli Gümüş, G. Ciofani, Superparamagnetic iron oxide nanoparticles for magnetic hyperthermia: recent advancements, molecular effects, and future directions in the omics era. Biomater Sci 10, 2103–2121 (2022)

    Article  Google Scholar 

  8. O.A. Abu-Noqta, A.A. Aziz, A.I. Usman, Colloidal stability of iron oxide nanoparticles coated with different capping agents. Mater. Today: Proc. 17, 1072–1077 (2019)

    Google Scholar 

  9. G. Unsoy, S. Yalcin, R. Khodadust, G. Gunduz, U. Gunduz, Synthesis optimization and characterization of chitosan-coated iron oxide nanoparticles produced for biomedical applications. J. Nanopart. Res. 14, 964 (2012)

    Article  ADS  Google Scholar 

  10. N.D. Thorat, O.M. Lemine, R.A. Bohara, K. Omri, L. El Mir, S.A.M. Tofail, Superparamagnetic iron oxide nanocargoes for combined cancer thermotherapy and MRI applications. Phys. Chem. Chem. Phys. 18, 21331–21339 (2016)

    Article  Google Scholar 

  11. K. El-Boubbou, O.M. Lemine, R. Ali, S.M. Huwaizi, S. Al-Humaid, A. AlKushi, Evaluating magnetic and thermal effects of various polymerylated magnetic iron oxide nanoparticles for combined chemo-hyperthermia. New J. Chem. 46, 5489–5504 (2022)

    Article  Google Scholar 

  12. X.J. Kang, Y.L. Dai, P.A. Ma, D.M. Yang, C.X. Li, Z.Y. Hou, Z.Y. Cheng, J. Lin, Poly(acrylic acid)-modified Fe3O4 microspheres for magnetic-targeted and pH-triggered anticancer drug delivery. Chem. Eur. J. 18, 15676–15682 (2012)

    Article  Google Scholar 

  13. J. Ge, Y. Hu, M. Biasini, C. Dong, J. Guo, W.P. Beyermann, Y. Yin, One-step synthesis of highly water-soluble magnetite colloidal nanocrystals. Chem. Eur. J. 13, 7153–7161 (2007)

    Article  Google Scholar 

  14. Y.-Y. Xu, M. Zhou, H.-J. Geng, J.-J. Hao, Q.-Q. Ou, S.-D. Qi, H.-L. Chen, X.-G. Chen, A simplified method for synthesis of Fe3O4@PAA nanoparticles and its application for the removal of basic dyes. Appl. Surf. Sci. 258, 3897–3902 (2012)

    Article  ADS  Google Scholar 

  15. L.M. Sanchez, D.A. Martin, V.A. Alvarez, J.S. Gonzalez, Polyacrylic acid-coated iron oxide magnetic nanoparticles: the polymer molecular weight influence. Colloids Surf. A 543, 28–37 (2018)

    Article  Google Scholar 

  16. J. Ge, Y. Hu, M. Biasini, W.P. Beyermann, Y. Yin, Superparamagnetic magnetite colloidal nanocrystal clusters. Angew. Chem. Int. Ed. 46, 4342–4345 (2007)

    Article  Google Scholar 

  17. X. Yang, W. Jiang, L. Liu, B. Chen, S. Wu, D. Sun, F. Li, One-step hydrothermal synthesis of highly water-soluble secondary structural Fe3O4 nanoparticles. J. Magn. Magn. Mater. 324, 2249–2257 (2012)

    Article  ADS  Google Scholar 

  18. M. Rutnakornpituk, N. Puangsin, P. Theamdee, B. Rutnakornpituk, U. Wichai, Poly(acrylic acid)-grafted magnetic nanoparticle for conjugation with folic acid. Polymer 52, 987–995 (2011)

    Article  Google Scholar 

  19. O.M. Lemine, S. Algessair, N. Madkhali, B. Al-Najar, K. El-Boubbou, Assessing the heat generation and self-heating mechanism of superparamagnetic Fe3O4 nanoparticles for magnetic hyperthermia application: the effects of concentration, frequency, and magnetic field. Nanomaterials 13, 453 (2023)

    Article  Google Scholar 

  20. K. El-Boubbou, Acid-stabilized iron-based metal oxide colloidal nanoparticles, and methods thereof, US Patent 10,629,339, 2020.

  21. K. El-Boubbou, Magnetic iron oxide nanoparticles as drug carriers: clinical relevance. Nanomedicine 13, 953–971 (2018)

    Article  Google Scholar 

  22. P. Padwal, R. Bandyopadhyaya, S. Mehra, Polyacrylic acid-coated iron oxide nanoparticles for targeting drug resistance in mycobacteria. Langmuir 30, 15266–15276 (2014)

    Article  Google Scholar 

  23. K. El-Boubbou, R.O. Al-Kaysi, M.K. Al-Muhanna, H.M. Bahhari, A.I. Al-Romaeh, N. Darwish, K.O. Al-Saad, S.D. Al-Suwaidan, Ultra-small fatty acid-stabilized magnetite nanocolloids synthesized by in situ hydrolytic precipitation. J. Nanomater. (2015). https://doi.org/10.1155/2015/620672. (Article ID 620672)

    Article  Google Scholar 

  24. Y. Piñeiro, Z. Vargas, J. Rivas, M.A. López-Quintela, Iron oxide based nanoparticles for magnetic hyperthermia strategies in biological applications. Eur. J. Inorg. Chem. 2015, 4495–4509 (2015)

    Article  Google Scholar 

  25. H. Fatima, T. Charinpanitkul, K.-S. Kim, Fundamentals to apply magnetic nanoparticles for hyperthermia therapy. Nanomaterials 11, 1203 (2021)

    Article  Google Scholar 

  26. M.E. Sadat, R. Patel, J. Sookoor, S.L. Bud’ko, R.C. Ewing, J. Zhang, H. Xu, Y. Wang, G.M. Pauletti, D.B. Mast, D. Shi, Effect of spatial confinement on magnetic hyperthermia via dipolar interactions in Fe3O4 nanoparticles for biomedical applications. Mater. Sci. Eng. C 42, 52–63 (2014)

    Article  Google Scholar 

  27. A. Aldaoud, O.M. Lemine, N. Ihzaz, L. El Mir, S.A. Alrub, K. El-Boubbou, Magneto-thermal properties of Co-doped maghemite (γ-Fe2O3) nanoparticles for magnetic hyperthermia applications. Physica B 639, 413993 (2022)

    Article  Google Scholar 

  28. O.M. Lemine, N. Madkhali, M. Alshammari, S. Algessair, A. Gismelseed, L. El Mir, M. Hjiri, A.A. Yousif, K. El-Boubbou, Maghemite (γ-Fe2O3) and γ-Fe2O3-TiO2 nanoparticles for magnetic hyperthermia applications: synthesis, characterization and Heating efficiency. Materials 14(19), 5691 (2021)

    Article  ADS  Google Scholar 

  29. A.G. Roca, J.F. Marco, Md.P. Morales, C.J. Serna, Effect of nature and particle size on properties of uniform magnetite and maghemite nanoparticles. J. Phys. Chem. C 111, 18577–18584 (2007)

    Article  Google Scholar 

  30. T.E. Torres, E. Lima, M.P. Calatayud, B. Sanz, A. Ibarra, R. Fernández-Pacheco, A. Mayoral, C. Marquina, M.R. Ibarra, G.F. Goya, The relevance of Brownian relaxation as power absorption mechanism in magnetic hyperthermia. Sci. Rep. 9, 3992 (2019)

    Article  ADS  Google Scholar 

  31. P. de la Presa, Y. Luengo, M. Multigner, R. Costo, M.P. Morales, G. Rivero, A. Hernando, Study of heating efficiency as a function of concentration, size, and applied field in γ-fe2o3 nanoparticles. J. Phys. Chem. C 116, 25602–25610 (2012)

    Article  Google Scholar 

  32. J. Carrey, B. Mehdaoui, M. Respaud, Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: application to magnetic hyperthermia optimization. J. Appl. Phys. 109, 083921 (2011)

    Article  ADS  Google Scholar 

  33. M. Kallumadil, M. Tada, T. Nakagawa, M. Abe, P. Southern, Q.A. Pankhurst, Suitability of commercial colloids for magnetic hyperthermia. J. Magn. Magn. Mater. 321, 1509–1513 (2009)

    Article  ADS  Google Scholar 

  34. Y. Piñeiro-Redondo, M. Bañobre-López, I. Pardiñas-Blanco, G. Goya, M.A. López-Quintela, J. Rivas, The influence of colloidal parameters on the specific power absorption of PAA-coated magnetite nanoparticles. Nanoscale Res. Lett. 6, 383 (2011)

    Article  ADS  Google Scholar 

  35. J. Rivas, M. Bañobre-López, Y. Piñeiro-Redondo, B. Rivas, M.A. López-Quintela, Magnetic nanoparticles for application in cancer therapy. J. Magn. Magn. Mater. 324, 3499–3502 (2012)

    Article  ADS  Google Scholar 

  36. N. Bentarhlia, M. Elansary, M. Belaiche, Y. Mouhib, O.M. Lemine, H. Zaher, A. Oubihi, B. Kartah, H. Monfalouti, Evaluating of novel Mn–Mg–Co ferrite nanoparticles for biomedical applications: from synthesis to biological activities. Ceram. Int. (2023). https://doi.org/10.1016/j.ceramint.2023.10.017

    Article  Google Scholar 

  37. S. Elbeltagi, A.M. Saeedi, M.A. Ali, S.I. El-Dek, Magnetic fluid hyperthermia controlled by frequency counter and colorimetric program systems based on magnetic nanoparticles. Appl. Phys. A 129, 566 (2023)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deputyship for Research& Innovation, Ministry of Education in Saudi Arabia for funding this research through the project number IFP-IMSIU-2023033. The authors also appreciate the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University (IMSIU) for supporting and supervising this project.

Author information

Authors and Affiliations

Authors

Contributions

SA: investigation, validation. OML: conceptualization, investigation, formal analysis, writing—original draft. NM: investigation, validation. KEl-B: conceptualization, investigation, validation, writing—review and editing.

Corresponding authors

Correspondence to O. M. Lemine or Kheireddine El-Boubbou.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Algessair, S., Lemine, O.M., Madkhali, N. et al. Tuning the heat dissipated by polyacrylic acid (PAA)-coated magnetite nanoparticles under alternating magnetic field for hyperthermia applications. Appl. Phys. A 129, 814 (2023). https://doi.org/10.1007/s00339-023-07097-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-07097-9

Keywords

Navigation