Skip to main content
Log in

A plasmonic terahertz perfect absorber based on L-shaped graphene patches and gold rods

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This paper introduces a novel plasmonic perfect absorber tailored for the terahertz frequency range, utilizing a single-mode configuration. The absorber architecture comprises a meticulously designed layered periodic array, combining SiO2, gold, and graphene components. The fundamental building block of this structure encompasses four strategically positioned L-shaped graphene patches and gold rods, placed on a SiO2 substrate. The absorption efficiency is further enhanced by incorporating an underlying gold layer functioning as a reflector. Employing the 3D finite difference time domain (FDTD) method, we rigorously investigate the absorption characteristics inherent to the proposed design. A comprehensive parametric study is conducted, varying the gold rod thickness and absorber geometry to optimize the absorption performance. Remarkably, our simulations reveal a conspicuous absorption peak exhibiting near-perfect absorbance, attaining 99.99%, precisely localized at 2.95 THz. Furthermore, the absorber's absorption frequency can be dynamically tailored by modifying the chemical potential of the graphene, a manipulation readily achieved through external bias voltage variation. The study provides illuminating insights into the electric and magnetic field distributions, elucidating the underlying absorption mechanisms. The results are later interpreted to discuss the effect of gold rods and graphene patches. The proposed graphene-based absorber seems to be a promising candidate for diverse applications encompassing sensors, modulators, detectors, and beyond.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Availability of data and materials

The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. G.W. Hanson, Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene. J. Appl. Phys. 103(6), 064302 (2008)

    ADS  Google Scholar 

  2. W.D. Tan, C.Y. Su, R.J. Knize, G.Q. Xie, L.J. Li, D.Y. Tang, Mode locking of ceramic Nd: yttrium aluminum garnet with graphene as a saturable absorber. Appl. Phys. Lett. 96(3), 031106 (2010)

    ADS  Google Scholar 

  3. E.O. Polat, C. Kocabas, Broadband optical modulators based on graphene supercapacitors. Nano Lett. 13(12), 5851–5857 (2013)

    ADS  Google Scholar 

  4. B. Jafari, E. Gholizadeh, S. Golmohammadi, M. Ebadzadeh, H. Soofi, S. Aghili, An Innovative method for adjustable broadband THz to Mid-IR optical modulator using Graphene Gratings surface plasmon Fabry-Perot resonances with low insertion loss, high speed and modulation depth. Opt. Commun.Commun. 530, 129200 (2023)

    Google Scholar 

  5. A. Eslami, M. Sadeghi, Z. Adelpour, Designing and optimization of plasmonic modulator structure based on the active materials of ITO and graphene. J. Intell. Proc. Electric. Technol. 14(53), 159–170 (2023)

    Google Scholar 

  6. A.M. Melnychenko, S.J. Zelewski, D. Hlushchenko, K. Lis, A. Bachmatiuk, R. Kudrawiec, Electro-modulation and surface photovoltage spectroscopy with semi-transparent graphene electrodes. Appl. Surf. Sci. 613, 156020 (2023)

    Google Scholar 

  7. S. Armaghani, S. Khani, M. Danaie, Design of all-optical graphene switches based on a Mach-Zehnder interferometer employing optical Kerr effect. Superlattices Microstruct. 135, 106244 (2019)

    Google Scholar 

  8. X. Wang, C. Ma, L. Xiao, X. Li, J. Yu, B. Xiao, Dynamically tunable broadband absorber/reflector based on graphene and VO 2 metamaterials. Appl. Opt. 61(7), 1646–1651 (2022)

    ADS  Google Scholar 

  9. Z. Du, R. Zhou, S. Luo, D. Zhao, W. Long, Q. Ling et al., Tunable multi-band absorbers based on graphene metasurfaces for infrared sensing and switching. Opt. Commun.Commun. 534, 129320 (2023)

    Google Scholar 

  10. X. Wang, C. Ma, L. Xiao, B. Xiao, Dual-band dynamically tunable absorbers based on graphene and double vanadium dioxide metamaterials. J. Opt. (2023). https://doi.org/10.1007/s12596-023-01184-z

    Article  Google Scholar 

  11. Z. Ye, P. Wu, H. Wang, S. Jiang, M. Huang, D. Lei, F. Wu, Multimode tunable terahertz absorber based on a quarter graphene disk structure. Result Phys. 48, 106420 (2023)

    Google Scholar 

  12. H. Xu, M. Li, Z. Chen, L. He, Y. Dong, X. Li et al., Optical tunable multifunctional applications based on graphene metasurface in terahertz. Phys. Scr. 98(4), 045511 (2023)

    ADS  Google Scholar 

  13. M. B. Heydari, M. H. V. Samiei, A short review on graphene-based filters: perspectives and challenges. arXiv preprint arXiv:2010.07176‏ (2020)

  14. M.R. Nickpay, M. Danaie, A. Shahzadi, A triple band metamaterial graphene-based absorber using rotated split-ring resonators for THz biomedical sensing. Opt. Quant. Electron. 55(2), 193 (2023)

    Google Scholar 

  15. M.R. Nickpay, M. Danaie, A. Shahzadi, Wideband rectangular double-ring nanoribbon graphene-based antenna for terahertz communications. IETE J. Res. 68(3), 1625–1634 (2022)

    Google Scholar 

  16. T. Guo, C. Argyropoulos, Broadband polarizers based on graphene metasurfaces. Opt. Lett. 41(23), 5592–5595 (2016)

    ADS  Google Scholar 

  17. M.R. Rakhshani, Three-dimensional polarization-insensitive perfect absorber using nanorods array for sensing and imaging. IEEE Sens. J. 20(23), 14166–14172 (2020)

    ADS  Google Scholar 

  18. M.R. Nickpay, M. Danaie, A. Shahzadi, Highly sensitive THz refractive index sensor based on folded split-ring metamaterial graphene resonators. Plasmonics 17(1), 237–248 (2022). https://doi.org/10.1007/s11468-021-01512-8

    Article  Google Scholar 

  19. M. Janfaza, M.A. Mansouri-Birjandi, A. Tavousi, Applications of tunable mid-infrared plasmonic square-nanoring resonator based on graphene nanoribbon. Plasmonics 17(2), 479–490 (2022)

    Google Scholar 

  20. P. Jain, H. Chhabra, U. Chauhan, K. Prakash, A. Gupta, M.S. Soliman et al., Machine learning assisted hepta band THz metamaterial absorber for biomedical applications. Sci. Reports 13(1), 1792 (2023)

    ADS  Google Scholar 

  21. S. Ma, S. Wen, X. Mi, H. Zhao, J. Zhao, Bifunctional terahertz sensor based on tunable graphene metamaterial absorber. Opt. Commun.Commun. 532, 129254 (2023)

    Google Scholar 

  22. M.R. Nickpay, M. Danaie, A. Shahzadi, Design of a graphene-based multi-band metamaterial perfect absorber in THz frequency region for refractive index sensing. Physica E 138, 115114 (2022)

    Google Scholar 

  23. S. Naghizade, H. Saghaei, Tunable electro-optic analog-to-digital converter using graphene nanoshells in photonic crystal ring resonators. JOSA B 38(7), 2127–2134 (2021)

    ADS  Google Scholar 

  24. S. Zhang, Z. Li, F. Xing, Review of polarization optical devices based on graphene materials. Int. J. Mol. Sci. 21(5), 1608 (2020)

    Google Scholar 

  25. T. Hao, L. Lu, D. Zhou, G. Ji, & X. Wang, A broadband TM-pass polarizer based on graphene-incorporated rib-loaded LNOI waveguide. In AOPC 2022: Optoelectronics and Nanophotonics (Vol. 12556, pp. 159–162). SPIE (2023)‏

  26. F.A. Alzahrani, V. Sorathiya, A numerical investigation study on tunable graphene-squared pixel array-based infrared polarizer. Appl. Phys. B 129(1), 1–10 (2023)

    ADS  Google Scholar 

  27. I. Mazraeh-Fard, A. Alighanbari, Equivalent circuit model for a graphene-based high efficiency tunable broadband terahertz polarizer. Appl. Opt. 62(9), 2256–2265 (2023)

    ADS  Google Scholar 

  28. C. Fu, S. Dong, L. Zhang, W. Yu, L. Han, Dual-band and dynamic regulated terahertz linear polarization converter based on graphene metasurface. Opt. Commun.Commun. 529, 129042 (2023)

    Google Scholar 

  29. A. Didari-Bader, H. Saghaei, Penrose tiling-inspired graphene-covered multiband terahertz metamaterial absorbers. Opt. Express 31(8), 12653–12668 (2023)

    ADS  Google Scholar 

  30. A.A. Tabrizi, H. Saghaei, M.A. Mehranpour, M. Jahangiri, Enhancement of absorption and effectiveness of a perovskite thin-film solar cell embedded with Gold nanospheres. Plasmonics 16, 747–760 (2021)

    Google Scholar 

  31. A. Najafi, M. Soltani, I. Chaharmahali, S. Biabanifard, Reliable design of THz absorbers based on graphene patterns: exploiting genetic algorithm. Optik 203, 163924 (2020)

    ADS  Google Scholar 

  32. M.R. Rakhshani, Wide-angle perfect absorber using a 3D nanorod metasurface as a plasmonic sensor for detecting cancerous cells and its tuning with a graphene layer. Photon. Nanostruct.-Fundam. Appl. 43, 100883 (2021)

    Google Scholar 

  33. M.R. Nickpay, M. Danaie, A. Shahzadi, A wideband and polarization-insensitive graphene-based metamaterial absorber. Superlattices Microstruct. 150, 106786 (2021)

    Google Scholar 

  34. F. Qin, J. Chen, J. Liu, L. Liu, C. Tang, B. Tang et al., Design of high efficiency perovskite solar cells based on inorganic and organic undoped double hole layer. Sol. Energy 262, 111796 (2023)

    ADS  Google Scholar 

  35. Y. Zhu, P. Cai, W. Zhang, T. Meng, Y. Tang, Z. Yi et al., Ultra-wideband high-efficiency solar absorber and thermal emitter based on semiconductor InAs microstructures. Micromachines 14(8), 1597 (2023)

    Google Scholar 

  36. S. Wu, S. Xu, Y. Zhang, Y. Wu, J. Jiang, Q. Wang et al., Asymmetric transmission and optical rotation of a quasi-3D asymmetric metallic structure. Opt. Lett. 39(22), 6426–6429 (2014)

    ADS  Google Scholar 

  37. J.B. Pendry, Negative refraction makes a perfect lens. Phys. Rev. Lett. 85(18), 3966 (2000)

    ADS  Google Scholar 

  38. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D.A. Genov, G. Bartal, X. Zhang, Three-dimensional optical metamaterial with a negative refractive index. Nature 455(7211), 376–379 (2008)

    ADS  Google Scholar 

  39. D. Schurig, J.J. Mock, B. Justice, S.A. Cummer, J.B. Pendry, A.F. Starr, D.R. Smith, Metamaterial electromagnetic cloak at microwave frequencies. Science 314(5801), 977–980 (2006)

    ADS  Google Scholar 

  40. M. Danaie, L. Hajshahvaladi, E. Ghaderpanah, A single-mode tunable plasmonic sensor based on an 8-shaped resonator for cancer cell detection. Sci. Rep. 13(1), 13976 (2023)

    ADS  Google Scholar 

  41. L. Hajshahvaladi, H. Kaatuzian, M. Moghaddasi, M. Danaie, Hybridization of surface plasmons and photonic crystal resonators for high-sensitivity and high-resolution sensing applications. Sci. Rep. 12(1), 21292 (2022)

    ADS  Google Scholar 

  42. A.H.A. Nohoji, M. Danaie, Highly sensitive refractive index sensor based on photonic crystal ring resonators nested in a Mach-Zehnder interferometer. Opt. Quant. Electron. 54(9), 574 (2022)

    Google Scholar 

  43. L. Hajshahvaladi, H.Kaatuzian, M. Danaie and A.A. Nohiji, The effect of metal rods in a hybrid plasmonic-photonic crystal cavity design. In 2022 30th International Conference on Electrical Engineering (ICEE) (pp. 936–940). IEEE (2022)

  44. L. Hajshahvaladi, H. Kaatuzian, M. Danaie and G. Nourbakhsh, Realization of a high-resolution plasmonic refractive index sensor based on double-nanodisk shaped resonators. In 2022 30th International Conference on Electrical Engineering (ICEE) (pp. 926–930). IEEE (2022)

  45. K. Nourmohamadi, M. Danaie, H. Soltanizadeh, Refractive index optical sensor using gold-walled silicon nanowire. Opt. Quant. Electron. 55(1), 51 (2023)

    Google Scholar 

  46. B. Ghafari, M. Danaie, M. Afsahi, Perfect absorber based on Epsilon-Near-Zero metamaterial as a refractive index sensor. Sens. Imaging 24(1), 15 (2023)

    ADS  Google Scholar 

  47. L. Hajshahvaladi, H. Kaatuzian, M. Danaie, A high-sensitivity refractive index biosensor based on Si nanorings coupled to plasmonic nanohole arrays for glucose detection in water solution. Opt. Commun.Commun. 502, 127421 (2022)

    Google Scholar 

  48. S.G. Shafagh, H. Kaatuzian, M. Danaie, Design and analysis of infrared tunable all-optical filters based on plasmonic hybrid nanostructure using periodic nanohole arrays. Plasmonics 17, 693–708 (2022)

    Google Scholar 

  49. N. Korani, A. Abbasi and M. Danaie, Band-pass and Band-stop Plasmonic Filters Based on Wilkinson Power Divider Structure. Plasmonics, pp.1–10 (2023)

  50. H.T. Chen, Interference theory of metamaterial perfect absorbers. Opt. Express 20(7), 7165–7172 (2012)

    ADS  Google Scholar 

  51. W. Li, J. Valentine, Metamaterial perfect absorber based hot electron photodetection. Nano Lett. 14(6), 3510–3514 (2014)

    ADS  Google Scholar 

  52. G. Dayal, S.A. Ramakrishna, Design of multi-band metamaterial perfect absorbers with stacked metal–dielectric disks. J. Opt. 15(5), 055106 (2013)

    ADS  Google Scholar 

  53. X. Zhao, J. Zhang, K. Fan, G. Duan, G.D. Metcalfe, M. Wraback et al., Nonlinear terahertz metamaterial perfect absorbers using GaAs. Photon. Res, 4(3), A16–A21 (2016)

    Google Scholar 

  54. M.R. Nickpay, M. Danaie, A. Shahzadi, Graphene-based metamaterial absorber for refractive index sensing applications in terahertz band. Diam. Relat. Mater. 130, 109539 (2022)

    ADS  Google Scholar 

  55. Y. Liu, Y.S. Lin, Terahertz metamaterial using reconfigurable H-shaped resonator with tunable perfect absorption characteristic. Mater. Today Commun. 35, 105700 (2023)

    Google Scholar 

  56. M.R. Nickpay, M. Danaie, A. Shahzadi, Graphene-based tunable quad-band fan-shaped split-ring metamaterial absorber and refractive index sensor for THz spectrum. Micro Anostruct. 173, 207473 (2023)

    Google Scholar 

  57. N.I. Landy, S. Sajuyigbe, J.J. Mock, D.R. Smith, W.J. Padilla, Perfect metamaterial absorber. Phys. Rev. Lett. 100(20), 207402 (2008)

    ADS  Google Scholar 

  58. S. Zhang, W. Fan, N.C. Panoiu, K.J. Malloy, R.M. Osgood, S.R.J. Brueck, Experimental demonstration of near-infrared negative-index metamaterials. Phys. Rev. Lett. 95(13), 137404 (2005)

    ADS  Google Scholar 

  59. G. Dolling, M. Wegener, C.M. Soukoulis, S. Linden, Negative-index metamaterial at 780 nm wavelength. Opt. Lett. 32(1), 53–55 (2007)

    ADS  Google Scholar 

  60. D.R. Smith, J.B. Pendry, Homogenization of metamaterials by field averaging. JOSA B 23(3), 391–403 (2006)

    ADS  Google Scholar 

  61. F. Wu, P. Shi, Z. Yi, H. Li, Y. Yi, Ultra-broadband solar absorber and high-efficiency thermal emitter from uv to mid-infrared spectrum. Micromachines 14(5), 985 (2023)

    Google Scholar 

  62. W.J. Padilla, M.T. Aronsson, C. Highstrete, M. Lee, A.J. Taylor, R.D. Averitt, Electrically resonant terahertz metamaterials: theoretical and experimental investigations. Phys. Rev. B 75(4), 041102 (2007)

    ADS  Google Scholar 

  63. M. Gao, L. Zhu, C.K. Peh, G.W. Ho, Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production. Energy Environ. Sci. 12(3), 841–864 (2019)

    Google Scholar 

  64. S. Naghizade, A. Didari-Bader, H. Saghaei, M. Etezad, An electro-optic comparator based on photonic crystal ring resonators covered by graphene nanoshells. Optik 283, 170898 (2023)

    ADS  Google Scholar 

  65. S. Naghizade, A. Didari-Bader, H. Saghaei, Ultra-fast tunable optoelectronic 2-to-4 binary decoder using graphene-coated silica rods in photonic crystal ring resonators. Opt. Quant. Electron. 54(11), 767 (2022)

    Google Scholar 

  66. M.L. Hakim, T. Alam, A.F. Almutairi, M.F. Mansor, M.T. Islam, Polarization insensitivity characterization of dual-band perfect metamaterial absorber for K band sensing applications. Sci. Rep. 11(1), 17829 (2021)

    ADS  Google Scholar 

  67. H. Chen, Z. Chen, H. Yang, L. Wen, Z. Yi, Z. Zhou et al., Multi-mode surface plasmon resonance absorber based on dart-type single-layer graphene. RSC Adv. 12(13), 7821–7829 (2022)

    ADS  Google Scholar 

  68. X. Huang, X. Zhang, Z. Hu, M. Aqeeli, A. Alburaikan, Design of broadband and tunable terahertz absorbers based on graphene metasurface: equivalent circuit model approach. IET Microwaves Antennas Propag. 9(4), 307–312 (2015)

    Google Scholar 

  69. S.K. Patel, V. Sorathiya, Z. Sbeah, S. Lavadiya, T.K. Nguyen, V. Dhasarathan, Graphene-based tunable infrared multi band absorber. Opt. Commun.Commun. 474, 126109 (2020)

    Google Scholar 

  70. Y. Zheng, Z. Yi, L. Liu, X. Wu, H. Liu, G. Li et al., Numerical simulation of efficient solar absorbers and thermal emitters based on multilayer nanodisk arrays. Appl. Thermal Eng. 230, 120841 (2023)

    ADS  Google Scholar 

  71. S. Liang, F. Xu, W. Li, W. Yang, S. Cheng, H. Yang et al., Tunable smart mid infrared thermal control emitter based on phase change material VO2 thin film. Appl. Thermal Eng. 232, 121074 (2023)

    Google Scholar 

  72. X. Huang, W. He, F. Yang, J. Ran, B. Gao, W.L. Zhang, Polarization-independent and angle-insensitive broadband absorber with a target-patterned graphene layer in the terahertz regime. Opt. Express 26(20), 25558–25566 (2018)

    ADS  Google Scholar 

  73. H. Feng, Z. Xu, K. Li, M. Wang, W. Xie, Q. Luo et al., Tunable polarization-independent and angle-insensitive broadband terahertz absorber with graphene metamaterials. Opt. Express 29(5), 7158–7167 (2021)

    ADS  Google Scholar 

  74. Z. Chen, P. Cai, Q. Wen, H. Chen, Y. Tang, Z. Yi et al., Graphene multi-frequency broadband and ultra-broadband terahertz absorber based on surface plasmon resonance. Electronics 12(12), 2655 (2023)

    Google Scholar 

  75. W. Xu, S. Sonkusale, Microwave diode switchable metamaterial reflector/absorber. Appl. Phys. Lett. 103(3), 031902 (2013)

    ADS  Google Scholar 

  76. H. Wang, P. Kong, W. Cheng, W. Bao, X. Yu, L. Miao, J. Jiang, Broadband tunability of polarization-insensitive absorber based on frequency selective surface. Sci. Rep. 6(1), 23081 (2016)

    ADS  Google Scholar 

  77. F. Hu, Y. Qian, Z. Li, J. Niu, K. Nie, X. Xiong et al., Design of a tunable terahertz narrowband metamaterial absorber based on an electrostatically actuated MEMS cantilever and split ring resonator array. J. Opt. 15(5), 055101 (2013)

    ADS  Google Scholar 

  78. H. Xiong, Y.B. Wu, J. Dong, M.C. Tang, Y.N. Jiang, X.P. Zeng, Ultra-thin and broadband tunable metamaterial graphene absorber. Opt. Express 26(2), 1681–1688 (2018)

    ADS  Google Scholar 

  79. S.H. Lee, M. Choi, T.T. Kim, S. Lee, M. Liu, X. Yin et al., Switching terahertz waves with gate-controlled active graphene metamaterials. Nat. Mater. 11(11), 936–941 (2012)

    ADS  Google Scholar 

  80. B. Sensale-Rodriguez, T. Fang, R. Yan, M.M. Kelly, D. Jena, L. Liu, H. Xing, Unique prospects for graphene-based terahertz modulators. Appl. Phys. Lett. 99(11), 113104 (2011)

    ADS  Google Scholar 

  81. Y. Zhang, Y. Feng, B. Zhu, J. Zhao, T. Jiang, Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency. Opt. Express 22(19), 22743–22752 (2014)

    ADS  Google Scholar 

  82. B.X. Wang, G.Z. Wang, H. Zhu, Quad-band terahertz absorption enabled using a rectangle-shaped resonator cut with an air gap. RSC Adv. 7(43), 26888–26893 (2017)

    ADS  Google Scholar 

  83. M. Biabanifard, M.S. Abrishamian, Circuit modeling of tunable terahertz graphene absorber. Optik 158, 842–849 (2018)

    ADS  Google Scholar 

  84. M. Holzinger, A. Le Goff, S. Cosnier, Nanomaterials for biosensing applications: a review. Front. Chem. 2, 63 (2014)

    ADS  Google Scholar 

  85. F. Jabbarzadeh, M. Heydari, A. Habibzadeh-Sharif, A comparative analysis of the accuracy of Kubo formulations for graphene plasmonics. Mater. Res. Express 6(8), 086209 (2019)

    ADS  Google Scholar 

  86. J. Wu, A polarization insensitive dual-band tunable graphene absorber at the THz frequency. Phys. Lett. A 384(35), 126890 (2020)

    Google Scholar 

  87. M. Amin, M. Farhat, H. Bağcı, An ultra-broadband multilayered graphene absorber. Opt. Express 21(24), 29938–29948 (2013)

    ADS  Google Scholar 

  88. C. Cen, Y. Zhang, X. Chen, H. Yang, Z. Yi, W. Yao et al., A dual-band metamaterial absorber for graphene surface plasmon resonance at terahertz frequency. Physica E: Low-Dimens. Syst. Nanostruct. 117, 113840 (2020)

    Google Scholar 

  89. Y. Zhang, T. Li, Q. Chen, H. Zhang, J.F. O’Hara, E. Abele et al., Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies. Sci. Reports 5(1), 18463 (2015)

    ADS  Google Scholar 

  90. M. Hosseinzadeh Sani, H. Saghaei, M.A. Mehranpour, A. Asgariyan Tabrizi, A novel all-optical sensor design based on a tunable resonant nanocavity in photonic crystal microstructure applicable in MEMS accelerometers. Photon. Sens. 11, 457–471 (2021)

    ADS  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Design, analysis, and investigation: NK, Writing—original draft preparation: NK, Writing—review and editing: MD, Supervision: MD.

Corresponding author

Correspondence to Mohammad Danaie.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests. The authors also have no relevant financial or non-financial interests to disclose.

Ethical approval

We the undersigned declare that the manuscript entitled “A plasmonic terahertz perfect absorber based on L-shaped graphene patches and gold rods” is original, has not been fully or partly published before, and is not currently being considered for publication elsewhere. Also, results are presented clearly, honestly, and without fabrication, falsification, or inappropriate data manipulation. We confirm that the manuscript has been read and approved by all named authors and that there are no other persons who satisfied the criteria for authorship but are not listed. We further confirm that the order of authors listed in the manuscript has been approved by all of us.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korani, N., Danaie, M. A plasmonic terahertz perfect absorber based on L-shaped graphene patches and gold rods. Appl. Phys. A 129, 806 (2023). https://doi.org/10.1007/s00339-023-07096-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-07096-w

Keywords

Navigation