Skip to main content
Log in

Nanohybrid embedded ferroelectric polymer blend for bipolar memristive application

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Nanohybrid comprising two-dimensional (2D) materials have surfaced as potential building blocks for manipulating carrier confinement and transportation in electronic devices. The embedded defects in the nanohybrid, more precisely in the semiconductor counterparts, create localized electronic states that primarily impact the carrier transport properties. Herein, nanohybrid of reduced graphene oxide-tin disulfide (rGO-SnS2) with numerous vacancy-induced defect states were synthesized and reinforced with poly (methyl methacrylate) (PMMA), poly (vinylidene fluoride) (PVDF), and PMMA-PVDF (20:80) blend to investigate the memristive characteristics in a metal–insulator–metal (MIM) configuration. XRD analysis demonstrates a comparatively larger crystallite size of SnS2 in rGO-SnS2 nanohybrid (27.31 nm) than in pristine material (15.85 nm), indicating improved nucleation and template-supported growth of SnS2. The nanohybrid encapsulated polymer films promote improved charge transfer through the fillers-encased polymer matrices. The polymer blend featuring rGO-SnS2 displays ferroelectric β-crystal phases with rich sulfur vacancies in the semiconductor counterparts, verified using Electron Paramagnetic Resonance (EPR) analysis. Devices composed of rGO-SnS2 nanohybrid without polymer do not exhibit any memory characteristics. On the contrary, the devices show distinct memory features, such as write-once-read-many (WORM) and bipolar (with ION/IOFF ratio ~ 10–104) behavior, when nanohybrid is reinforced with PMMA and PVDF/or polymer blend. The internal electric field (Ein) in ferroelectric PVDF assists in de-trapping charge carriers from the sulfur vacancies, exhibiting a non-volatile bipolar memory neither observed for PMMA-based devices. Higher surface roughness leads to uneven current distribution and non-uniform switching for nanohybrid-embedded polymer films. A theoretical model is proposed to elucidate the carrier transport mechanism, adhering to Ohm’s law, and space charge limited current (SCLC) in the low resistance state (LRS) and high resistance state (HRS), respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. C.M. Compagnoni, R. Shirota, High-density solid-state memory devices and technologies. Electronics 11, 538 (2022)

    Google Scholar 

  2. M. Zeng, Y. Xiao, J. Liu, K. Yang, L. Fu, Exploring two-dimensional materials toward the next-generation circuits: from monomer design to assembly control. Chem. Rev. 118, 6236–6296 (2018)

    Google Scholar 

  3. Z. Wu, W. Jie, Z. Yang, J. Hao, Hybrid heterostructures and devices based on two-dimensional layers and wide bandgap. Mater. Today Nano 12, 100092 (2020)

    Google Scholar 

  4. J. Kim, D. Son, M. Lee, C. Song, J.-K. Song, J.H. Koo, D.J. Lee, H.J. Shim, J.H. Kim, M. Lee, T. Hyeon, D.-H. Kim, A wearable multiplexed silicon nonvolatile memory array using nanocrystal charge confinement. Sci. Adv. 2, e1501101 (2016)

    ADS  Google Scholar 

  5. J. Yoo, S.H. Kim, S.A. Chekol, J. Park, C. Sung, J. Song, D. Lee, H. Hwang, 3D stackable and scalable binary ovonic threshold switch devices with excellent thermal stability and low leakage current for high-density cross-point memory applications. Adv. Electron. Mater. 5, 1900196 (2019)

    Google Scholar 

  6. L. Wu, H. Liu, J. Lin, S. Wang, Self-compliance and high performance Pt/HfOx/Ti RRAM achieved through annealing. Nanomaterials 10, 457 (2020)

    Google Scholar 

  7. B. Gao, B. Chen, F. Zhang, L. Liu, X. Liu, J. Kang, H. Yu, B. Yu, A novel defect-engineering-based implementation for high-performance multilevel data storage in resistive switching memory. IEEE Trans. Electron Devices 60, 1379 (2013)

    ADS  Google Scholar 

  8. D. Geng, H.Y. Yang, Recent advances in growth of novel 2D materials: beyond graphene and transition metal dichalcogenides. Adv. Mater. 30, 1800865 (2018)

    Google Scholar 

  9. Z. Lin, A. McCreary, N. Briggs, S. Subramanian, K. Zhang, Y. Sun, X. Li, N.J. Borys, H. Yuan, S.K. Fullerton-Shirey, A. Chernikov, H. Zhao, S. McDonnell, A.M. Lindenberg, K. Xiao, B.J. LeRoy, M. Drndić, J.C.M. Hwang, J. Park, M. Chhowalla, R.E. Schaak, A. Javey, M.C. Hersam, J. Robinson, M. Terrones, 2D materials advances: from large scale synthesis and controlled heterostructures to improved characterization techniques, defects and applications. 2D Mater. 3, 042001 (2016)

    Google Scholar 

  10. K.K. Khichar, S.B. Dangi, V. Dhayal, U. Kumar, S.Z. Hashmi, V. Sadhu, B.L. Choudhary, S. Kumar, S. Kaya, A.E. Kuznetsov, S. Dalela, S.K. Gupta, P.A. Alvi, Structural, optical, and surface morphological studies of ethyl cellulose/graphene oxide nanocomposites. Polym. Compos. 41, 2792 (2020)

    Google Scholar 

  11. V. Dhayal, S.Z. Hashmi, U. Kumar, B.L. Choudhary, A.E. Kuznetsov, S. Dalela, S. Kumar, S. Kaya, S.N. Dolia, P.A. Alvi, Spectroscopic studies, molecular structure optimization and investigation of structural and electrical properties of novel and biodegradable Chitosan-GO polymer nanocomposites. J. Mater. Sci. 55, 14829 (2020)

    ADS  Google Scholar 

  12. V.H. Nguyen, F. Mazzamuto, J. Saint-Martin, A. Bournel, P. Dollfus, Graphene nanomesh-based devices exhibiting a strong negative differential conductance effect. Nanotechnology 23, 289502 (2012)

    Google Scholar 

  13. Y.C. Zhang, Z.N. Du, S.Y. Li, M. Zhang, Novel synthesis and high visible light photocatalytic activity of SnS2 nanoflakes from SnCl22H2O and S powders. Appl. Catal. B Environ. 95, 153–159 (2010)

    Google Scholar 

  14. Z. Mutlu, R.J. Wu, D. Wickramaratne, S. Shahrezaei, C. Liu, S. Temiz, A. Patalano, M. Ozkan, R.K. Lake, K.A. Mkhoyan, C.S. Ozkan, Phase engineering of 2D tin sulfides. Small 12, 2998–3004 (2016)

    Google Scholar 

  15. A. Khan, J. Cong, R.R. Kumar, S. Ahmed, D. Yang, X. Yu, Chemical vapor deposition of graphene on self-limited SiC interfacial layers formed on silicon substrates for heterojunction devices. ACS Appl. Nano Mater. 5, 17544 (2022)

    Google Scholar 

  16. J. Cong, A. Khan, P. Hang, L. Cheng, D. Yang, X. Yu, High detectivity graphene/si heterostructure photodetector with a single hydrogenated graphene atomic interlayer for passivation and carrier tunneling. Nanotechnology 33, 505201 (2022)

    ADS  Google Scholar 

  17. J. Cong, A. Khan, P. Hang, D. Yang, X. Yu, Graphene/Si heterostructure with an organic interfacial layer for a self-powered photodetector with a high ON/OFF ratio. ACS Appl. Electron. Mater. 4, 1715 (2022)

    Google Scholar 

  18. M.R. Habib, W. Wang, A. Khan, Y. Khan, S.M. Obaidulla, X. Pi, M. Xu, Theoretical study of interfacial and electronic properties of transition metal dichalcogenides and organic molecules based van der Waals heterostructures. Adv. Theory Simul. 3, 2000045 (2020)

    Google Scholar 

  19. R.R. Kumar, M.R. Habib, A. Khan, P.-C. Chen, T. Murugesan, S. Gupta, A.K. Anbalagan, N.-H. Tai, C.-H. Lee, H.-N. Lin, Sulfur monovacancies in liquid-exfoliated MoS2 nanosheets for NO2 gas sensing. ACS Appl. Nano Mater. 4, 9459 (2021)

    Google Scholar 

  20. Y. Ji, H. Zhang, X. Ma, J. Xu, D. Yang, Single-crystalline SnS2 nano-belts fabricated by a novel hydrothermal method. J. Phys. Condens. Matter 15, L661–L665 (2003)

    ADS  Google Scholar 

  21. J. Johny, S.S. Guzman, B. Krishnan, J.A.A. Martinez, D. Avellaneda Avellaneda, S. Shaji, SnS2 nanoparticles by liquid phase laser ablation: effects of laser fluence, temperature and post irradiation on morphology and hydrogen evolution reaction. Appl. Surf. Sci. 470, 276–288 (2019)

    ADS  Google Scholar 

  22. L.A. Burton, T.J. Whittles, D. Hesp, W.M. Linhart, J.M. Skelton, B. Hou, R.F. Webster, G. O’Dowd, C. Reece, D. Cherns, D.J. Fermin, T.D. Veal, V.R. Dhanak, A. Walsh, Electronic and optical properties of single crystal SnS2: an earth-abundant disulfide photocatalyst. J. Mater. Chem. A 4, 1312 (2016)

    Google Scholar 

  23. Y. Liu, X. Mi, J. Wang, M. Li, D. Fan, H. Lu, X. Chen, Two-dimensional SnS2 nanosheets exfoliated from an inorganic–organic hybrid with enhanced photocatalytic activity towards Cr (VI) reduction. Inorg. Chem. Front. 6, 948–954 (2019)

    ADS  Google Scholar 

  24. A. Umar, M.S. Akhtar, G.N. Dar, M. Abaker, A. Al-Hajry, S. Baskoutas, Visible-light-driven photocatalytic and chemical sensing properties of SnS2 nanoflakes. Talanta 114, 183–190 (2013)

    Google Scholar 

  25. Y. Hu, T. Chen, X. Wang, L. Ma, R. Chen, H. Zhu, X. Yuan, C. Yan, G. Zhu, H. Lv, J. Liang, Z. Jin, J. Liu, Controlled growth and photoconductive properties of hexagonal SnS2 nanoflakes with mesa-shaped atomic steps. Nano Res. 10, 1434–1447 (2017)

    Google Scholar 

  26. Q. Liu, S. Liu, A. Wu, H. Huang, L. Zhou, SnS2 and SnS/SnS2 heterojunction nanosheets prepared by in-situ one-step sulfurization and visible light-assisted electrochemical water splitting properties. J. Alloys Compd. 834, 155174 (2020)

    Google Scholar 

  27. X. Jiao, X. Li, X. Jin, Y. Sun, J. Xu, L. Liang, H. Ju, J. Zhu, Y. Pan, W. Yan, Y. Lin, Y. Xie, Partially oxidized SnS2 atomic layers achieving efficient visible-light-driven CO2 reduction. J. Am. Chem. Soc. 139, 18044–18051 (2017)

    Google Scholar 

  28. I. Shown, S. Samireddi, Y.-C. Chang, R. Putikam, P.-H. Chang, A. Sabbah, F.-Y. Fu, W.-F. Chen, C.-I. Wu, T.-Y. Yu, P.-W. Chung, M.C. Lin, L.-C. Chen, K.-H. Chen, Carbon-doped SnS2 nanostructure as a high efficiency solar fuel catalyst under visible light. Nat. Commun. 9, 169 (2018)

    ADS  Google Scholar 

  29. S.-J. Yoo, R.E. Agbenyeke, H. Choi, K. Jeon, J.J. Ryu, T. Eom, B.K. Park, T.-M. Chung, D.S. Jeong, W. Song, G.H. Kim, Strategic allocation of two-dimensional van der Waals semiconductor as an oxygen reservoir for boosting resistive switching reliability. Appl. Surf. Sci. 577, 151936 (2022)

    Google Scholar 

  30. C. Tan, X. Qi, Z. Liu, F. Zhao, H. Li, X. Huang, L. Shi, B. Zheng, X. Zhang, L. Xie, Z. Tang, W. Huang, H. Zhang, Self-assembled chiral nanofibers from ultrathin low-dimensional nanomaterials. J. Am. Chem. Soc. 137, 1565–1571 (2015)

    Google Scholar 

  31. S. Bhattacharjee, U. Das, P.K. Sarkar, A. Roy, Stable charge retention in graphene-MoS2 assemblies for resistive switching effect in ultra-thin super-flexible organic memory devices. Org. Electron. 58, 145–152 (2018)

    Google Scholar 

  32. N.S. Das, S. Mitra, A. Chowdhury, A. Roy, Nonvolatile memristive devices based on in situ functionalized layered rGO-MoS2 nanocomposites. ECS J. Solid State Sci. Technol. 11, 071003 (2022)

    ADS  Google Scholar 

  33. K.K. Gogoi, S. Das, S. Maiti, A. Chowdhury, Semiconductor-grafted polymer-embedded reduced graphene oxide nanohybrid for power-efficient nonvolatile resistive memory applications. ACS Appl. Nano Mater. 3, 11562–11573 (2020)

    Google Scholar 

  34. K.K. Gogoi, A. Chowdhury, Electric field induced tunable memristive characteristics of exfoliated graphene oxide embedded polymer nanocomposites. J. Appl. Phys. 126, 025501 (2019)

    ADS  Google Scholar 

  35. S. Guduru, S. Jatav, G. Mallikarjunachari, M.S.R. Rao, P. Ghosh, D.K. Satapathy, Influence of microstructure on nanomechanical properties of polymorphic phases of poly(vinylidene Fluoride). J. Phys. Chem. B 122, 8591–8600 (2018)

    Google Scholar 

  36. A.M.S. Arulanantham, S. Valanarasu, K. Jeyadheepan, A. Kathalingam, I. Kulandaisamy, Effect of sulfur concentration on the properties of tin disulfide thin films by nebulizer spray pyrolysis technique. J. Mater. Sci. Mater. Electron. 28, 18675–18685 (2017)

    Google Scholar 

  37. Z. Wang, F. Pang, In-plane growth of large ultra-thin SnS2 nanosheets by tellurium-assisted chemical vapor deposition. RSC Adv. 7, 29080–29087 (2017)

    ADS  Google Scholar 

  38. D.-W. Kim, H.-J. Kim, W.-Y. Lee, K. Kim, S.-H. Lee, J.-H. Bae, I.-M. Kang, K. Kim, J. Jang, Enhanced switching reliability of sol–gel-processed Y2O3 RRAM devices based on Y2O3 surface roughness-induced local electric field. Materials 15, 1943 (2022)

    ADS  Google Scholar 

  39. S.J. Kang, Y.J. Park, I. Bae, K.J. Kim, H.-C. Kim, S. Bauer, E.L. Thomas, C. Park, Printable ferroelectric PVDF/PMMA blend films with ultralow roughness for low voltage non-volatile polymer memory. Adv. Funct. Mater. 19, 2812 (2009)

    Google Scholar 

  40. D. Guan, J. Li, X. Gao, Y. Xie, C. Yuan, Growth characteristics and influencing factors of 3D hierarchical flower-like SnS2 nanostructures and their superior lithium-ion intercalation performance. J. Alloys Compd. 658, 190–197 (2016)

    Google Scholar 

  41. M.P. Joshi, K.V. Khot, S.S. Patil, S.S. Mali, C.K. Hong, P.N. Bhosale, Investigating the light harvesting capacity of sulfur ion concentration dependent SnS2 thin films synthesized by self assembled arrested precipitation technique. Mater. Res. Express 6, 086467 (2019)

    ADS  Google Scholar 

  42. A. Rahimi, I. Kazeminezhad, S.E. Mousavi Ghahfarokhi, Synthesis and investigation of SnS2/RGO nanocomposites with different GO concentrations: structure and optical properties, photocatalytic performance. J. Mater. Sci. Mater. Electron. 29, 4449–4456 (2018)

    Google Scholar 

  43. M. Li, E. Liu, H. Hu, S. Ouyang, H. Xu, D. Wang, Surfactant-free synthesis of single crystalline SnS2 and effect of surface atomic structure on the photocatalytic property. Int. J. Photoenergy 2014, 1 (2014)

    Google Scholar 

  44. J. Kaur, Sunaina, Z. Zaidi, S. Vaidya, New synthetic methodology to enhance Mg doping in SnS2: structural characterization and photocatalytic activity. Bull Mater Sci 43, 298 (2020).

  45. A.M.S. Arulanantham, S. Valanarasu, A. Kathalingam, K. Jeyadheepan, Influence of carrier gas pressure on nebulizer spray deposited tin disulfide thin films. J. Mater. Sci. Mater. Electron. 29, 11358–11366 (2018)

    Google Scholar 

  46. S. Lee, S. Shin, G. Ham, J. Lee, H. Choi, H. Park, H. Jeon, Characteristics of layered tin disulfide deposited by atomic layer deposition with H2S annealing. AIP Adv. 7, 045307 (2017)

    ADS  Google Scholar 

  47. L.D. Bharatula, M.B. Erande, I.S. Mulla, C.S. Rout, D.J. Late, SnS2 nanoflakes for efficient humidity and alcohol sensing at room temperature. RSC Adv. 6, 105421–105427 (2016)

    ADS  Google Scholar 

  48. J.Z. Ou, W. Ge, B. Carey, T. Daeneke, A. Rotbart, W. Shan, Y. Wang, Z. Fu, A.F. Chrimes, W. Wlodarski, S.P. Russo, Y.X. Li, K. Kalantar-Zadeh, Physisorption based charge transfer in two-dimensional SnS2 for selective and reversible NO2 gas sensing. ACS Nano 9, 10313–10323 (2015)

    Google Scholar 

  49. X. Cai, T. Lei, D. Sun, L. Lin, A critical analysis of the α, β and γ phases in poly (vinylidene fluoride) using FTIR. RSC Adv. 7, 15382–15389 (2017)

    ADS  Google Scholar 

  50. S. Zheng, Y. Li, J. Hao, H. Fang, Y. Yuan, H.-S. Tsai, Q. Sun, P. Wan, X. Zhang, Y. Wang, Hierarchical assembly of graphene-bridged SnO2-rGO/SnS2 heterostructure with interfacial charge transfer highway for high-performance NO2 detection. Appl. Surf. Sci. 568, 150926 (2021)

    Google Scholar 

  51. U. Kumar, S. Upadhyay, P.A. Alvi, Study of reaction mechanism, structural, optical and oxygen vacancy-controlled luminescence properties of Eu-modified Sr2SnO4 Ruddlesden popper oxide. Phys. B Condens. Matter 604, 412708 (2021)

    Google Scholar 

  52. H. Cheema, S. Kumar, P.A. Alvi, B.L. Choudhary, U. Kumar, Synthesis and physical properties of nanopowder and electrical properties of bulk samples of ZnFe2-xNixO4 (x: 0, 0.05, 0.10) Adv. Powder Technol. 31, 4241 (2020)

    Google Scholar 

  53. S.B. Dangi, S.Z. Hashmi, U. Kumar, B.L. Choudhary, A.E. Kuznetsov, S. Dalela, S. Kumar, S.N. Dolia, S. Kumar, B.F.I. Sofi, R. Darwesh, P.M.Z. Hasan, P.A. Alvi, Exploration of spectroscopic, surface morphological, structural, electrical, optical and mechanical properties of biocompatible PVA-GO PNCs Diam. Relat. Mater. 127, 109158 (2022)

    Google Scholar 

  54. X. Shen, H. Gao, Y. Duan, Y. Sun, J. Guo, Z. Yu, S. Wu, X. Ma, Y. Yang, Effect of crystallinity on the performance of AlN-based resistive random access memory using rapid thermal annealing. Appl. Phys. Lett. 118, 183503 (2021)

    ADS  Google Scholar 

  55. J. Xie, Y. Zhu, N. Zhuang, X. Li, X. Yuan, J. Li, G. Hong, W. Mai, High-concentration ether-based electrolyte boosts the electrochemical performance of SnS2–reduced graphene oxide for K-ion batteries. J. Mater. Chem. A 7, 19332–19341 (2019)

    Google Scholar 

  56. R. Li, C. Miao, M. Zhang, W. Xiao, Novel hierarchical structural SnS2 composite supported by biochar carbonized from chewed sugarcane as enhanced anodes for lithium ion batteries. Ionics 26, 1239–1247 (2020)

    Google Scholar 

  57. X. An, J.C. Yu, J. Tang, Biomolecule-assisted fabrication of copper doped SnS2 nanosheet–reduced graphene oxide junctions with enhanced visible-light photocatalytic activity. J. Mater. Chem. A 2, 1000–1005 (2014)

    Google Scholar 

  58. H. Chen, B. Zhang, J. Zhang, W. Yu, J. Zheng, Z. Ding, H. Li, L. Ming, D.A.M. Bengono, S. Chen, H. Tong, In-situ grown SnS2 nanosheets on rGO as an advanced anode material for lithium and sodium ion batteries. Front. Chem. 6, 629 (2018)

    ADS  Google Scholar 

  59. D. Meng, Z. Xie, M. Wang, J. Xu, X. San, J. Qi, Y. Zhang, G. Wang, Q. Jin, In situ fabrication of SnS2/SnO2 heterostructures for boosting formaldehyde-sensing properties at room temperature. Nanomaterials 13, 2493 (2023)

    Google Scholar 

  60. Y. Peng, J. Wang, Y. Yan, W. Wang, H. Xiao, Electropositive carbon sites and sulfur vacancies in SnS2/g-C3N4 for achieving adsorption and photocatalytic degradation of As(III) in stages by pH regulation. J. Alloys Compd. 877, 160292 (2021)

    Google Scholar 

  61. X. Yan, K. Ye, T. Zhang, C. Xue, D. Zhang, C. Ma, J. Wei, G. Yang, Formation of three-dimensionally ordered macroporous TiO2 @ nanosheet SnS2 heterojunctions for exceptional visible-light driven photocatalytic activity. New J. Chem. 41, 8482 (2017)

    Google Scholar 

  62. X. Li, G. Guo, N. Qin, Z. Deng, Z. Lu, D. Shen, X. Zhao, Y. Li, B.-L. Su, H.-E. Wang, SnS2/TiO2 nanohybrids chemically bonded on nitrogen-doped graphene for lithium-sulfur batteries: synergy of vacancy defects and heterostructure. Nanoscale 10, 15505 (2018)

    Google Scholar 

  63. Y.-C. Lai, D.-Y. Wang, I.-S. Huang, Y.-T. Chen, Y.-H. Hsu, T.-Y. Lin, H.-F. Meng, T.-C. Chang, Y.-J. Yang, C.-C. Chen, F.-C. Hsu, Y.-F. Chen, Low operation voltage macromolecular composite memory assisted by graphene nanoflakes. J. Mater. Chem. C 1, 552–559 (2013)

    Google Scholar 

  64. Y.H. Tseng, W.C. Shen, C.J. Lin, Modeling of electron conduction in contact resistive random access memory devices as random telegraph noise. J. Appl. Phys. 111, 073701 (2012)

    ADS  Google Scholar 

  65. Q. Zhang, J. Pan, X. Yi, L. Li, S. Shang, Nonvolatile memory devices based on electrical conductance tuning in poly(N-vinylcarbazole)–graphene composites. Org. Electron. 13, 1289–1295 (2012)

    Google Scholar 

  66. X.-D. Zhuang, Y. Chen, G. Liu, P.-P. Li, C.-X. Zhu, E.-T. Kang, K.-G. Noeh, B. Zhang, J.-H. Zhu, Y.-X. Li, Conjugated-polymer-functionalized graphene oxide: synthesis and nonvolatile rewritable memory effect. Adv. Mater. 22, 1731–1735 (2010)

    Google Scholar 

  67. N.S. Das, R. Jana, A. Roy, A. Chowdhury, MoS2-functionalized conductive carbon heterostructure embedded with ferroelectric polymers for bipolar memristive applications. Semicond. Sci. Technol. 38, 065003 (2023)

    ADS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Central Instrumentation Facility (CIF), NIT Silchar, CIF, IIT Guwahati, Advanced Materials Research Centre (AMRC), IIT Mandi, Central Equipment Facilities and Technical Research Centre (TRC), S.N. Bose National Centre for Basic Sciences (SNBNCBS), Kolkata, for providing material characterization facilities. AC would like to thank SNBNCBS for the financial support provided under the internal project (File No. SNB/ANP-AC/21-22/272). This work was financially supported by the Science and Engineering Research Board (SERB), Department of Science and Technology (DST), Government of India (Grant no. CRG/2022/001145).

Author information

Authors and Affiliations

Authors

Contributions

NSD: conceptualization, methodology, software, and writing—original draft. RJ: data curation, visualization, and software. AR: supervision, resources, and writing-review and editing. AC: conceptualization, supervison, resources, writing—reviewing. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Avijit Chowdhury.

Ethics declarations

Conflict of interest

There is no conflict of interest. The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

We approved all ethics.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1713 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, N.S., Jana, R., Roy, A. et al. Nanohybrid embedded ferroelectric polymer blend for bipolar memristive application. Appl. Phys. A 129, 796 (2023). https://doi.org/10.1007/s00339-023-07081-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-07081-3

Keywords

Navigation