Skip to main content
Log in

Highly sensitive self-powered piezoelectric poly(vinylidene fluoride)-based nanofibrous mat containing microporous metal–organic framework nanostructures for energy harvesting applications

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Developing highly sensitive flexible piezoelectric sensor for wearable electronic devices have received considerable attention due to their promising application in physiological monitoring. Therefore, many research studies are conducted to enhance the piezoelectric response of poly(vinylidene fluoride) (PVDF)-based membrane. In this work, we present a novel flexible piezoelectric PVDF-based sensor with high-pressure sensitivity induced by the incorporation of microporous metal–organic framework (MOF) particles. Scanning electron microscopy images indicated the formation of uniform and bead-free PVDF/MOF nanofibrous composite with an average diameter of 173–241 nm. In this design, the microporous MOF crystals extremely enhanced the polar β-phase content of PVDF nanofibers by 20% without significant loss in its flexibility and synergistically promoted the piezoelectric performance of PVDF-based sensor. The PVDF nanofibers containing 1 wt% MOF crystals showed a peak-to-peak voltage of 3.84 V under an applied force of 2.5 N, which was superior to that of pristine PVDF nanofibers by 32%. Furthermore, the practical application of the developed PVDF/MOF nanofiber-based piezoelectric sensor was demonstrated for detecting human activities, showing a maximum output voltage of 2.08 V (for finger tapping), 5.92 V (for hand punching), and 20.66 V (for heel strike). The self-powered and highly sensitive PVDF/MOF nanofiber-based piezoelectric sensor also exhibits excellent long-term working stability with no obvious responsivity attenuation. The results of this work provide new insights for the development of next-generation piezoelectric sensors and energy harvesting systems.

Graphical abstract

A novel flexible piezoelectric PVDF-based nanogenerator with high-pressure sensitivity induced by the incorporation of microporous MOF particles. The piezoelectric response of the developed PVDF/MOF nanogenerator indicated superior output voltage and sensitivity than most of the reported PVDF-based nanogenerators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data incorporated in this study are available upon request from the corresponding author.

References

  1. M. Kim, J. Fan, Piezoelectric properties of three types of PVDF and ZnO nanofibrous composites. Adv. Fiber Mater. 3(3), 160–171 (2021). https://doi.org/10.1007/S42765-021-00068-W/TABLES/2

    Article  Google Scholar 

  2. X. Liu, J. Ma, X. Wu, L. Lin, X. Wang, Polymeric Nanofibers with Ultrahigh Piezoelectricity via Self-Orientation of Nanocrystals. ACS Nano 11(2), 1901–1910 (2017). https://doi.org/10.1021/acsnano.6b07961

    Article  Google Scholar 

  3. C. Qin, D. Zheng, Q. Hu, X. Zhang, Z. Wang, Y. Li, J. Zhu, J.Z. Ou, C. Yang, Y. Wang, Flexible Integrated Metallic Glass-Based Sandwich Electrodes for High-Performance Wearable All-Solid-State Supercapacitors. Appl. Mater. Today 19, 100539 (2020). https://doi.org/10.1016/j.apmt.2019.100539

    Article  Google Scholar 

  4. M. Zhu, M. Lou, I. Abdalla, J. Yu, Z. Li, B. Ding, Highly shape adaptive fiber based electronic skin for sensitive joint motion monitoring and tactile sensing. Nano Energy 2020(69), 104429 (2019). https://doi.org/10.1016/j.nanoen.2019.104429

    Article  Google Scholar 

  5. M. Zhu, M. Lou, J. Yu, Z. Li, B. Ding, Energy Autonomous Hybrid Electronic Skin with Multi-Modal Sensing Capabilities. Nano Energy 78(July), 105208 (2020). https://doi.org/10.1016/j.nanoen.2020.105208

    Article  Google Scholar 

  6. D.Y. Park, D.J. Joe, D.H. Kim, H. Park, J.H. Han, C.K. Jeong, H. Park, J.G. Park, B. Joung, K.J. Lee, Self-Powered Real-Time Arterial Pulse Monitoring Using Ultrathin Epidermal Piezoelectric Sensors. Adv. Mater. 29(37), 1–9 (2017). https://doi.org/10.1002/adma.201702308

    Article  ADS  Google Scholar 

  7. Yin, Y.; Guo, C.; Li, H.; Yang, H.; Xiong, F.; Chen, D. The Progress of Research into Flexible Sensors in the Field of Smart Wearables. Sensors 2022, Vol. 22, Page 5089 2022, 22 (14), 5089. https://doi.org/10.3390/S22145089.

  8. Hakoda, C.; Ren, B.; Lissenden, C. J.; Rose, J. L. Quantitative Verification of Thin-Film Polyvinylidene Fluoride (PVDF) Transducer Array Performance up to 60°C. AIP Conf. Proc. 2017, 1806 (February). https://doi.org/10.1063/1.4974559.

  9. Z. Guo, S. Liu, X. Hu, Q. Zhang, F. Shang, S. Song, Y. Xiang, Self-Powered Sound Detection and Recognition Sensors Based on Flexible Polyvinylidene Fluoride-Trifluoroethylene Films Enhanced by in-Situ Polarization. Sensors Actuators, A Phys. 306, 111970 (2020). https://doi.org/10.1016/j.sna.2020.111970

    Article  Google Scholar 

  10. C.B. Lee, J.A. Tarbutton, Polyvinylidene Fluoride (PVDF) Direct Printing for Sensors and Actuators. Int. J. Adv. Manuf. Technol. 104(5–8), 3155–3162 (2019). https://doi.org/10.1007/s00170-019-04275-z

    Article  Google Scholar 

  11. D. Zhang, X. Zhang, X. Li, H. Wang, X. Sang, G. Zhu, Y. Yeung, Enhanced Piezoelectric Performance of PVDF/BiCl3/ZnO Nanofiber-Based Piezoelectric Nanogenerator. Eur. Polym. J. 166, 110956 (2022). https://doi.org/10.1016/J.EURPOLYMJ.2021.110956

    Article  Google Scholar 

  12. P.K. Szewczyk, A. Gradys, S.K. Kim, L. Persano, M. Marzec, A. Kryshtal, T. Busolo, A. Toncelli, D. Pisignano, A. Bernasik, S. Kar-Narayan, P. Sajkiewicz, U. Stachewicz, Enhanced Piezoelectricity of Electrospun Polyvinylidene Fluoride Fibers for Energy Harvesting. ACS Appl. Mater. Interfaces 12(11), 13575–13583 (2020). https://doi.org/10.1021/acsami.0c02578

    Article  Google Scholar 

  13. J.E. Lee, Y. Eom, Y.E. Shin, S.H. Hwang, H.H. Ko, H.G. Chae, Effect of Interfacial Interaction on the Conformational Variation of Poly(Vinylidene Fluoride) (PVDF) Chains in PVDF/Graphene Oxide (GO) Nanocomposite Fibers and Corresponding Mechanical Properties. ACS Appl. Mater. Interfaces 11(14), 13665–13675 (2019). https://doi.org/10.1021/acsami.8b22586

    Article  Google Scholar 

  14. S. Cherumannil Karumuthil, S. Prabha Rajeev, U. Valiyaneerilakkal, S. Athiyanathil, S. Varghese, Electrospun Poly(Vinylidene Fluoride-Trifluoroethylene)-Based Polymer Nanocomposite Fibers for Piezoelectric Nanogenerators. ACS Appl. Mater. Interfaces 11(43), 40180–40188 (2019). https://doi.org/10.1021/acsami.9b17788

    Article  Google Scholar 

  15. C. Chen, Z. Bai, Y. Cao, M. Dong, K. Jiang, Y. Zhou, Y. Tao, S. Gu, J. Xu, X. Yin, W. Xu, Enhanced Piezoelectric Performance of BiCl3/PVDF Nanofibers-Based Nanogenerators. Compos. Sci. Technol. 192, 108100 (2020). https://doi.org/10.1016/j.compscitech.2020.108100

    Article  Google Scholar 

  16. Y. Yang, H. Pan, G. Xie, Y. Jiang, C. Chen, Y. Su, Y. Wang, H. Tai, Flexible Piezoelectric Pressure Sensor Based on Polydopamine-Modified BaTiO3/PVDF Composite Film for Human Motion Monitoring. Sensors Actuators, A Phys. 301, 111789 (2020). https://doi.org/10.1016/j.sna.2019.111789

    Article  Google Scholar 

  17. B.S. Athira, A. George, K. Vaishna Priya, U.S. Hareesh, E.B. Gowd, K.P. Surendran, A. Chandran, High-Performance Flexible Piezoelectric Nanogenerator Based on Electrospun PVDF-BaTiO 3 Nanofibers for Self-Powered Vibration Sensing Applications. ACS Appl. Mater. Interfaces (2022). https://doi.org/10.1021/ACSAMI.2C07911/SUPPL_FILE/AM2C07911_SI_003.MP4

    Article  Google Scholar 

  18. M.S. Sorayani Bafqi, R. Bagherzadeh, M. Latifi, Fabrication of Composite PVDF-ZnO Nanofiber Mats by Electrospinning for Energy Scavenging Application with Enhanced Efficiency. J. Polym. Res. 22(7), 1–9 (2015). https://doi.org/10.1007/s10965-015-0765-8

    Article  Google Scholar 

  19. V. Bhavanasi, V. Kumar, K. Parida, J. Wang, P.S. Lee, Enhanced Piezoelectric Energy Harvesting Performance of Flexible PVDF-TrFE Bilayer Films with Graphene Oxide. ACS Appl. Mater. Interfaces 8(1), 521–529 (2016). https://doi.org/10.1021/acsami.5b09502

    Article  Google Scholar 

  20. M. Hasanzadeh, M.R. Ghahhari, S.M. Bidoki, Enhanced Piezoelectric Performance of PVDF-Based Electrospun Nanofibers by Utilizing in Situ Synthesized Graphene-ZnO Nanocomposites. J. Mater. Sci. Mater. Electron. 32(12), 15789–15800 (2021). https://doi.org/10.1007/s10854-021-06132-w

    Article  Google Scholar 

  21. S. Tiwari, A. Gaur, C. Kumar, P. Maiti, Enhanced Piezoelectric Response in Nanoclay Induced Electrospun PVDF Nanofibers for Energy Harvesting. Energy 171, 485–492 (2019). https://doi.org/10.1016/j.energy.2019.01.043

    Article  Google Scholar 

  22. Q. Peng, L. Yang, Q. Zhao, Y. Ma, H. Ji, J. Qiu, Sandwich-Structured Co3[Co(CN)6]2/P(VDF-HFP) Piezoelectric Composites with Superior Electromechanical Activity. J. Mater. Sci. Mater. Electron. 31(24), 22028–22038 (2020). https://doi.org/10.1007/S10854-020-04704-W/TABLES/1

    Article  Google Scholar 

  23. M. Hasanzadeh, A. Simchi, H.S. Far, Kinetics and Adsorptive Study of Organic Dye Removal Using Water-Stable Nanoscale Metal Organic Frameworks. Mater. Chem. Phys. 233, 267–275 (2019). https://doi.org/10.1016/j.matchemphys.2019.05.050

    Article  Google Scholar 

  24. H.S. Far, M. Hasanzadeh, M.S. Nashtaei, M. Rabbani, A. Haji, B. Hadavi Moghadam, PPI-Dendrimer-Functionalized Magnetic Metal-Organic Framework (Fe3O4@MOF@PPI) with High Adsorption Capacity for Sustainable Wastewater Treatment. ACS Appl. Mater. Interfaces 12(22), 25294–25303 (2020). https://doi.org/10.1021/acsami.0c04953

    Article  Google Scholar 

  25. H.S. Far, M. Hasanzadeh, M.S. Nashtaei, M. Rabbani, Fast and Efficient Adsorption of Palladium from Aqueous Solution by Magnetic Metal-Organic Framework Nanocomposite Modified with Poly(Propylene Imine) Dendrimer. Environ. Sci. Pollut. Res. 2021, 1–13 (2021). https://doi.org/10.1007/S11356-021-15144-2

    Article  Google Scholar 

  26. O.V. Gutov, W. Bury, D.A. Gomez-Gualdron, V. Krungleviciute, D. Fairen-Jimenez, J.E. Mondloch, A.A. Sarjeant, S.S. Al-Juaid, R.Q. Snurr, J.T. Hupp, T. Yildirim, O.K. Farha, Water-Stable Zirconium-Based Metal-Organic Framework Material with High-Surface Area and Gas-Storage Capacities. Chem. - A Eur. J. 20(39), 12389–12393 (2014). https://doi.org/10.1002/chem.201402895

    Article  Google Scholar 

  27. Hamedi, A.; Anceschi, A.; Trotta, F.; Hasanzadeh, M.; Caldera, F. Rapid Temperature-Assisted Synthesis of Nanoporous γ-Cyclodextrin-Based Metal–Organic Framework for Selective CO2 Adsorption. J. Incl. Phenom. Macrocycl. Chem. 2021 993 2021, 99 (3), 245–253. https://doi.org/10.1007/S10847-020-01039-1.

  28. L. Liu, Z.-P. Tao, H.-R. Chi, B. Wang, S.-M. Wang, Z.-B. Han, The Applications and Prospects of Hydrophobic Metal-Organic Frameworks in Catalysis. Dalt. Trans. 50(1), 39–58 (2021). https://doi.org/10.1039/D0DT03635H

    Article  Google Scholar 

  29. B.N. Khiarak, M. Hasanzadeh, M. Mojaddami, H. Shahriyar Far, A. Simchi, In Situ Synthesis of Quasi-Needle-like Bimetallic Organic Frameworks on Highly Porous Graphene Scaffolds for Efficient Electrocatalytic Water Oxidation. Chem. Commun. 56(21), 3135–3138 (2020). https://doi.org/10.1039/c9cc09908e

    Article  Google Scholar 

  30. B.N. Khiarak, M. Hasanzadeh, A. Simchi, Electrocatalytic Hydrogen Evolution Reaction on Graphene Supported Transition Metal-Organic Frameworks. Inorg. Chem. Commun. 127(January), 108525 (2021). https://doi.org/10.1016/j.inoche.2021.108525

    Article  Google Scholar 

  31. H.D. Lawson, S.P. Walton, C. Chan, Metal-Organic Frameworks for Drug Delivery: A Design Perspective. ACS Appl. Mater. Interfaces 13(6), 7004–7020 (2021). https://doi.org/10.1021/ACSAMI.1C01089

    Article  Google Scholar 

  32. Hamedi, A.; Anceschi, A.; Patrucco, A.; Hasanzadeh, M. A γ-Cyclodextrin-Based Metal–Organic Framework (γ-CD-MOF): A Review of Recent Advances for Drug Delivery Application. https://doi.org/10.1080/1061186X.2021.20126832021, 30 (4), 381–393. https://doi.org/10.1080/1061186X.2021.2012683.

  33. H.S. Far, M. Hasanzadeh, M. Najafi, R. Rahimi, Hybridization of Nanoclay with a Chromium-Based Metal-Organic Framework for Boosting Adsorption of Organic Dyes from Wastewater. ChemistrySelect 7(5), e202104191 (2022). https://doi.org/10.1002/slct.202104191

    Article  Google Scholar 

  34. M. Hasanzadeh, A. Simchi, H. Shahriyari Far, Nanoporous Composites of Activated Carbon-Metal Organic Frameworks for Organic Dye Adsorption: Synthesis, Adsorption Mechanism and Kinetics Studies. J. Ind. Eng. Chem. 81, 405–414 (2020). https://doi.org/10.1016/j.jiec.2019.09.031

    Article  Google Scholar 

  35. L. Yang, T. Qiu, M. Shen, H. He, H. Huang, Metal-Organic Frameworks Co3[Co(CN)6]2: A Promising Candidate for Dramatically Reinforcing the Piezoelectric Activity of PVDF. Compos. Sci. Technol. 196(February), 108232 (2020). https://doi.org/10.1016/j.compscitech.2020.108232

    Article  Google Scholar 

  36. Senthilnathan, J. ; ; Arockiarajan, A. ; Yoshimura, M.; Wagner, J. B.; Sasmal, A.; Senthilnathan, J.; Arockiarajan, A.; Yoshimura, M. Two-Dimensional Metal-Organic Framework Incorporated Highly Polar PVDF for Dielectric Energy Storage and Mechanical Energy Harvesting. Nanomater. 2023, Vol. 13, Page 1098 2023, 13 (6), 1098. https://doi.org/10.3390/NANO13061098.

  37. R.A. Shaukat, Q.M. Saqib, J. Kim, H. Song, M.U. Khan, M.Y. Chougale, J. Bae, M.J. Choi, Ultra-Robust Tribo- and Piezo-Electric Nanogenerator Based on Metal Organic Frameworks (MOF-5) with High Environmental Stability. Nano Energy 96, 107128 (2022). https://doi.org/10.1016/J.NANOEN.2022.107128

    Article  Google Scholar 

  38. B.H. Moghadam, M. Hasanzadeh, A. Simchi, Self-Powered Wearable Piezoelectric Sensors Based on Polymer Nanofiber-Metal-Organic Framework Nanoparticle Composites for Arterial Pulse Monitoring. ACS Appl. Nano Mater. 3(9), 8742–8752 (2020). https://doi.org/10.1021/acsanm.0c01551

    Article  Google Scholar 

  39. Das, N. K.; Ravipati, M.; Badhulika, S. Nickel Metal-Organic Framework/PVDF Composite Nanofibers Based Self-Powered Wireless Sensor for Pulse Monitoring of Underwater Divers via Triboelectrically Generated Maxwell- Displacement Current. Adv. Funct. Mater. 2023, 2303288. https://doi.org/10.1002/adfm.202303288.

  40. L. Ruan, Y. Jia, J. Guan, B. Xue, S. Huang, Z. Wu, G. Li, X. Cui, Highly Piezocatalysis of Metal-Organic Frameworks Material ZIF-8 under Vibration. Sep. Purif. Technol. 283, 120159 (2022). https://doi.org/10.1016/J.SEPPUR.2021.120159

    Article  Google Scholar 

  41. Y.R. Lee, M.S. Jang, H.Y. Cho, H.J. Kwon, S. Kim, W.S. Ahn, ZIF-8: A Comparison of Synthesis Methods. Chem. Eng. J. 271, 276–280 (2015). https://doi.org/10.1016/j.cej.2015.02.094

    Article  Google Scholar 

  42. N.M. Mahmoodi, M. Oveisi, A. Taghizadeh, M. Taghizadeh, Synthesis of Pearl Necklace-like ZIF-8@chitosan/PVA Nanofiber with Synergistic Effect for Recycling Aqueous Dye Removal. Carbohydr. Polym. 227, 115364 (2020). https://doi.org/10.1016/j.carbpol.2019.115364

    Article  Google Scholar 

  43. T.M. Brugo, E. Maccaferri, D. Cocchi, L. Mazzocchetti, L. Giorgini, D. Fabiani, A. Zucchelli, Self-Sensing Hybrid Composite Laminate by Piezoelectric Nanofibers Interleaving. Compos. Part B Eng. 212, 108673 (2021). https://doi.org/10.1016/J.COMPOSITESB.2021.108673

    Article  Google Scholar 

  44. Ahmad, A.; Iqbal, N.; Noor, T.; Hassan, A.; Khan, U. A.; Wahab, A.; Raza, M. A.; Ashraf, S. Cu-Doped Zeolite Imidazole Framework (ZIF-8) for Effective Electrocatalytic CO2 Reduction. J. CO2 Util. 2021, 48, 101523. https://doi.org/10.1016/J.JCOU.2021.101523.

  45. W. Xu, Y. Chen, J. Kang, B. Li, Fabrication of ZIF-8 Based on Lignin with High Yield for Dye Removal from Water. J. Iran. Chem. Soc. 16(2), 385–392 (2019). https://doi.org/10.1007/s13738-018-1517-6

    Article  Google Scholar 

  46. S. Yang, Y. Wang, H. Li, Y. Zhan, X. Ding, M. Wang, X. Wang, L. Xiao, Synthesis of Nano-ZIF-8@chitosan Microspheres and Its Rapid Removal of p-Hydroxybenzoic Acid from the Agro-Industry and Preservatives. J. Porous Mater. 28(1), 29–38 (2021). https://doi.org/10.1007/s10934-020-00966-1

    Article  Google Scholar 

  47. H. Fashandi, M.M. Abolhasani, P. Sandoghdar, N. Zohdi, Q. Li, M. Naebe, Morphological Changes towards Enhancing Piezoelectric Properties of PVDF Electrical Generators Using Cellulose Nanocrystals. Cellulose 23(6), 3625–3637 (2016). https://doi.org/10.1007/s10570-016-1070-3

    Article  Google Scholar 

  48. D. Dhakras, V. Borkar, S. Ogale, J. Jog, Enhanced Piezoresponse of Electrospun PVDF Mats with a Touch of Nickel Chloride Hexahydrate Salt. Nanoscale 4(3), 752–756 (2012). https://doi.org/10.1039/c2nr11841f

    Article  ADS  Google Scholar 

  49. X. Zhang, X. Cui, D. Wang, S. Wang, Z. Liu, G. Zhao, Y. Zhang, Z. Li, Z.L. Wang, L. Li, Piezoelectric Nanotopography Induced Neuron-Like Differentiation of Stem Cells. Adv. Funct. Mater. 29(22), 1–10 (2019). https://doi.org/10.1002/adfm.201900372

    Article  ADS  Google Scholar 

  50. P. Fakhri, B. Amini, R. Bagherzadeh, M. Kashfi, M. Latifi, N. Yavari, S. Asadi Kani, L. Kong, Flexible Hybrid Structure Piezoelectric Nanogenerator Based on ZnO Nanorod/PVDF Nanofibers with Improved Output. RSC Adv. 9(18), 10117–10123 (2019). https://doi.org/10.1039/c8ra10315a

    Article  ADS  Google Scholar 

  51. Y. Wu, J. Qu, W.A. Daoud, L. Wang, T. Qi, Flexible Composite-Nanofiber Based Piezo-Triboelectric Nanogenerators for Wearable Electronics. J. Mater. Chem. A 7(21), 13347–13355 (2019). https://doi.org/10.1039/c9ta02345c

    Article  Google Scholar 

  52. M.S. Sorayani Bafqi, A.H. Sadeghi, M. Latifi, R. Bagherzadeh, Design and Fabrication of a Piezoelectric Out-Put Evaluation System for Sensitivity Measurements of Fibrous Sensors and Actuators. J. Ind. Text. 50(10), 1643–1659 (2021). https://doi.org/10.1177/1528083719867443

    Article  Google Scholar 

  53. Cardoso, V. F.; Minas, G.; Costa, C. M.; Tavares, C. J.; Lanceros-Mendez, S. Micro and Nanofilms of Poly(Vinylidene Fluoride) with Controlled Thickness, Morphology and Electroactive Crystalline Phase for Sensor and Actuator Applications. Smart Mater. Struct. 2011, 20 (8). https://doi.org/10.1088/0964-1726/20/8/087002.

  54. J. Serrado Nunes, A. Wu, J. Gomes, V. Sencadas, P.M. Vilarinho, S. Lanceros-Méndez, Relationship between the Microstructure and the Microscopic Piezoelectric Response of the α- And β-Phases of Poly(Vinylidene Fluoride). Appl. Phys. A Mater. Sci. Process. 95(3), 875–880 (2009). https://doi.org/10.1007/s00339-009-5089-2

    Article  ADS  Google Scholar 

  55. Azmi, S.; Hosseini Varkiani, S. M.; Latifi, M.; Bagherzadeh, R. Tuning Energy Harvesting Devices with Different Layout Angles to Robust the Mechanical-to-Electrical Energy Conversion Performance. J. Ind. Text. 2022, 51 (5_suppl), 9000S-9016S. https://doi.org/10.1177/1528083720928822/ASSET/IMAGES/LARGE/10.1177_1528083720928822-FIG8.JPEG.

  56. B.J. Ju, J.H. Oh, C. Yun, C.H. Park, Development of a Superhydrophobic Electrospun Poly(Vinylidene Fluoride) Web via Plasma Etching and Water Immersion for Energy Harvesting Applications. RSC Adv. 8(50), 28825–28835 (2018). https://doi.org/10.1039/c8ra04652b

    Article  ADS  Google Scholar 

  57. Senthil, R.; Sumathi, V.; Tamilselvi, A.; Kavukcu, S. B.; Aruni, A. W. Functionalized Electrospun Nanofibers for High Efficiency Removal of Particulate Matter. Sci. Reports 2022 121 2022, 12 (1), 1–14. https://doi.org/10.1038/s41598-022-12505-w.

  58. S. Mirjalali, R. Bagherzadeh, S. Abrishami, M. Asadnia, S. Huang, A. Michael, S. Peng, C.H. Wang, S. Wu, Multilayered Electrospun/Electrosprayed Polyvinylidene Fluoride+Zinc Oxide Nanofiber Mats with Enhanced Piezoelectricity. Macromol. Mater. Eng. 308(8), 2300009 (2023). https://doi.org/10.1002/MAME.202300009

    Article  Google Scholar 

  59. Yoo, J.; Cho, S.; Kim, W.; -, al; Waseem, A.; Ali Johar, M.; Afifi Hassan, M.; Satthiyaraju, M.; Ramesh, T. Effect of Annealing Treatment on PVDF Nanofibers for Mechanical Energy Harvesting Applications. Mater. Res. Express 2019, 6 (10), 105366. https://doi.org/10.1088/2053-1591/AB4037.

  60. Revathi, V.; Dinesh Kumar, S.; Chithra Lekha, P.; Subramanian, V.; Natarajan, T. S.; Muthamizhchelvan, C. Structural, Dielectric, and Magnetic Studies on Electrospun Magnesium Ferrite-Polyvinylidene Fluoride Core-Shell Composite Fibers. Acta Metall. Sin. (English Lett. 2014, 27 (4), 557–562. https://doi.org/10.1007/s40195-014-0055-1.

  61. M.S. Sorayani Bafqi, R. Bagherzadeh, M. Latifi, Nanofiber Alignment Tuning: An Engineering Design Tool in Fabricating Wearable Power Harvesting Devices. J. Ind. Text. 47(4), 535–550 (2017). https://doi.org/10.1177/1528083716654471/ASSET/IMAGES/LARGE/10.1177_1528083716654471-FIG1.JPEG

    Article  Google Scholar 

  62. S. Ponnan, T.W. Schmidt, T. Li, H.B. Gunasekaran, X. Ke, Y. Huang, S. Mubarak, A. Anand Prabu, Z. Weng, L. Wu, Electrospun Polyvinylidene Fluoride-Magnesiochromite Nanofiber-Based Piezoelectric Nanogenerator for Energy Harvesting Applications. ACS Appl. Polym. Mater. 3(10), 4879–4888 (2021). https://doi.org/10.1021/ACSAPM.1C00627/SUPPL_FILE/AP1C00627_SI_005.MP4

    Article  Google Scholar 

  63. Muduli, S. P.; Veeralingam, S.; Badhulika, S. Multilayered Piezoelectric Nanogenerator Based on Lead-Free Poly(Vinylidene Fluoride)-(0.67BiFeO3–0.33BaTiO3) Electrospun Nanofiber Mats for Fast Charging of Supercapacitors. ACS Appl. Energy Mater. 2022, 5 (3), 2993–3003. https://doi.org/10.1021/ACSAEM.1C03648/ASSET/IMAGES/LARGE/AE1C03648_0008.JPEG.

  64. S. Kang, S.H. Kim, H.B. Lee, S. Mhin, J.H. Ryu, Y.W. Kim, J.L. Jones, Y. Son, N.K. Lee, K. Lee, Y. Kim, K.H. Jung, H. Han, S.H. Park, K.M. Kim, High-Power Energy Harvesting and Imperceptible Pulse Sensing through Peapod-Inspired Hierarchically Designed Piezoelectric Nanofibers. Nano Energy 99, 107386 (2022). https://doi.org/10.1016/J.NANOEN.2022.107386

    Article  Google Scholar 

  65. F. Jiang, X. Zhou, J. Lv, J. Chen, J. Chen, H. Kongcharoen, Y. Zhang, P.S. Lee, Stretchable, Breathable, and Stable Lead-Free Perovskite/Polymer Nanofiber Composite for Hybrid Triboelectric and Piezoelectric Energy Harvesting. Adv. Mater. 34(17), 2200042 (2022). https://doi.org/10.1002/ADMA.202200042

    Article  Google Scholar 

  66. Su, Y.; Li, W.; Cheng, X.; Zhou, Y.; Yang, S.; Zhang, X.; Chen, C.; Yang, T.; Pan, H.; Xie, G.; Chen, G.; Zhao, X.; Xiao, X.; Li, B.; Tai, H.; Jiang, Y.; Chen, L. Q.; Li, F.; Chen, J. High-Performance Piezoelectric Composites via β Phase Programming. Nat. Commun. 2022 131 2022, 13 (1), 1–12. https://doi.org/10.1038/s41467-022-32518-3.

Download references

Acknowledgements

MH thanks the financial support of the Iran National Elites Foundation (INEF, Grant no. 15-89661).

Author information

Authors and Affiliations

Authors

Contributions

MA: investigation, methodology, validation, formal analysis, visualization. MH: supervision, conceptualization, validation, writing—review and editing, resources, funding acquisition.

Corresponding author

Correspondence to Mahdi Hasanzadeh.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 981 KB)

Supplementary file2 (MP4 3305 KB)

Supplementary file3 (MP4 3962 KB)

Supplementary file4 (MP4 4180 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atighi, M., Hasanzadeh, M. Highly sensitive self-powered piezoelectric poly(vinylidene fluoride)-based nanofibrous mat containing microporous metal–organic framework nanostructures for energy harvesting applications. Appl. Phys. A 129, 801 (2023). https://doi.org/10.1007/s00339-023-07080-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-07080-4

Keywords

Navigation