Skip to main content
Log in

Microstructure and magnetic properties of NdFe/MgO(001) thin films elaborated by evaporation from Nd3Fe29 nanocrystalline powder

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Rare earth (R) and transition metal (T) based films are potential magnetic materials for a variety of applications. However, their structural and magnetic behavior is sensitive to growth and processing parameters. This article presents a comprehensive investigation aiming to analyze the microstructure and magnetic properties of NdFe/MgO(001) films. These films were fabricated by evaporating nanocrystalline Nd3Fe29 powder at different thicknesses (t) and subjected to various heat treatments (Ta). The main objective of this research is to gain a detailed understanding of how the structural and magnetic behavior evolves based on these parameters, which had not been achieved previously. X-ray diffraction analysis was employed to determine the crystalline structure of NdFe/MgO(001) films and to track the grain size evolution with film thickness. Scanning electron microscopy (SEM) and magnetic force microscopy (MFM) images were used to directly visualize magnetic domains and the arrangement of magnetic grains at different thicknesses. Ferromagnetic resonance (FMR) measurements revealed significant variations in resonance fields and easy axes depending on film thickness and heat treatments. The study also examined how magnetic properties such as saturation magnetization (Ms) and coercivity (Hc) are closely related to grain size, magnetic domain organization, and heat treatments. Our research produced remarkable results, especially concerning a 250 nm thick NdFe/MgO(001) film annealed at 873 K, which exhibited outstanding properties. These properties include a robust coercivity of 5230 Oe, a substantial remanent magnetization of 211 emu/cm3, a magnetic anisotropy field of 10,325 Oe, a saturation magnetization (Ms) of 396 emu/cm3, and a Curie temperature of approximately 388 K. It’s noteworthy that this film possesses an easy magnetization axis parallel to the film plane (HFMR(∥) = 9125 Oe > HFMR(⊥) = 5897 Oe). Although the study provides valuable insights for the design and optimization of magnetic materials for various technological applications in the field of magnetism, its limitation should be acknowledged. The research did not deeply explore the correlations between the different studied properties, leaving a gap in our overall understanding of these characteristics. Therefore, future work will focus on conducting simulations and theoretical modeling to address this research gap.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request. This work has never been published before.

References

  1. C. Heck, Magnetic materials and their applications (Elsevier, 1974)

    Google Scholar 

  2. P. Campbell, Permanent magnet materials and their application (Cambridge University Press, 1994)

    Book  Google Scholar 

  3. F. P. Missell (eds), "Magnetism, Magnetic Materials and Their Applications," CD-ROM, January 20, (1999)

  4. M. Amiri, K. Eskandari, M.S. Niasari, Adv. Colloid Interface Sci. 271, 101982 (2019)

    Article  Google Scholar 

  5. C.-J. Yang, W.-Y. Lee, S.-D. Choi, J. Magn. Magn. Mater. 114, 18 (1992)

    Article  ADS  Google Scholar 

  6. G. Schneider, F.J.G. Landgraf, V. Villas-Boas, G.H. Bezerra, F.P. Missell, A.E. Ray, Mater. Lett. 8, 472 (1989)

    Article  Google Scholar 

  7. Z. Heydariyan, R. Monsef, M.S. Niasari, J. Alloys Compd. 924, 166564 (2022)

    Article  Google Scholar 

  8. G. Florio, Applications of magnetic material, in Encyclopedia of smart materials, vol. 5, (Elsevier, 2022), p.24

    Chapter  Google Scholar 

  9. A. Nakhlband, H.K. Kordasht, M. Rahimi, A. Mokhtarzadeh, J. Soleymani, Microchem. J. 173, 107042 (2022)

    Article  Google Scholar 

  10. I. Stoica, A. R. Abraham, A. K. Haghi (eds.), "Modern Magnetic Materials: Properties and Applications," December 2023, Hardback ISBN: 9781774912997, E-Book ISBN: 9781003372066.

  11. R.C. Taylor et al., J. Appl. Phys. 49, 2886 (1978)

    Article  ADS  Google Scholar 

  12. T. Suzuki, J. Magn. Magn. Mater. 50, 265 (1985)

    Article  ADS  Google Scholar 

  13. P. Guo-hong, W. Qin-tang, G. Qing-chun, J. Magn. Magn. Mater. 104–107, 981 (1992)

    Article  ADS  Google Scholar 

  14. D. Dai et al., J. Appl. Phys. 57, 3589 (1985)

    Article  ADS  Google Scholar 

  15. R. Carey et al., J. Magn. Magn. Mater. 50, 335 (1985)

    Article  ADS  Google Scholar 

  16. P.G. Hong, W.Q. Tang, G.Q. Chun, J. Magn. Magn. Mater. 104–107, 981 (1992)

    Article  Google Scholar 

  17. M.R. Jian, T.S. Chin, J.L. Tsai, H.W. Zhang, B.G. Shen, J. Magn. Magn. Mater. 209, 205 (2000)

    Article  ADS  Google Scholar 

  18. J.L. Schroeder, A.S. Ingason, J. Rosén, J. Birch, J. Crystal Growth 420, 22 (2015)

    Article  ADS  Google Scholar 

  19. S. Chikazumi, Physics of ferromagnetism, 2nd edn. (Oxford University Press, 2009)

    Google Scholar 

  20. V. Komogortsev, T.N. Patrusheva, D.A. Balaev, E.A. Denisova, I.V. Ponomarenko, Tech. Phys. Lett. 35, 882 (2009)

    Article  ADS  Google Scholar 

  21. R. Monsef, M.G. Arani, M.S. Niasari, Ultrason. Sonochem. 42, 201 (2018)

    Article  Google Scholar 

  22. R. Fersi, N. Mliki, L. Bessais, R. Guetari, V. Russier, M. Cabié, J. Alloys Compd. 522, 14 (2012)

    Article  Google Scholar 

  23. K. Dubey, S. Dubey, V. Sahu, R.A. Parry, A. Modi, N.K. Gaur, Appl. Phys. A 128, 560 (2022)

    Article  ADS  Google Scholar 

  24. C. Chappert, K. Le Dang, P. Beauvillain, H. Hurdequint, D. Renard, Phys. Rev. B 34, 3192 (1986)

    Article  ADS  Google Scholar 

  25. P. Liu, V.M. Hong Ng, Z. Yao, J. Zhou, Y. Lei, Z. Yang, H. Lv, L.B. Kong, ACS Appl. Mater. Interfaces 9, 16404 (2017)

    Article  Google Scholar 

  26. P. Liu, Z. Yao, J. Zhou, Z. Yang, L.B. Kong, J. Mater. Chem. C 4, 9738 (2016)

    Article  Google Scholar 

  27. M. Amiri, M.S. Niasari, A. Akbari, T. Gholami, Int. J. Hydrog. Energy 42(39), 24846 (2017)

    Article  Google Scholar 

  28. A.P. Dalia, R. Fersi, J. Magn. Magn. Mater. 532, 167874 (2021)

    Article  Google Scholar 

  29. R. Fersi, A.P. Dalia, J. Appl. Phys. 128(6), 540 (2022)

    Article  Google Scholar 

  30. R. Fersi, A.P. Dalia, J. Supercond. Nov. Magn. 35(10), 2923 (2022)

    Article  Google Scholar 

  31. A. Walther, C. Marcoux, B. Desloges, R. Grechishkin, D. Givord, N.M. Dempsey, J. Magn. Magn. Mater. 321(6), 590 (2009)

    Article  ADS  Google Scholar 

  32. Y. Gong, Z. Qiu, S. Liang, X. Zheng, H. Meng, Z. Zheng, D. Chen, S. Yuan, W. Xia, D. Zeng, J.P. Liu, J. Rare Earths (2023). https://doi.org/10.1016/j.jre.2023.06.012. (ISSN 1002-0721)

    Article  Google Scholar 

  33. M.S. Niasari, D. Ghanbari, F. Davar, J. Alloys Compd. 492, 570 (2010)

    Article  Google Scholar 

  34. M.S. Niasari, M. Dadkhah, F. Davar, Polyhedron 28(14), 3005 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

RF: Conceptualization, methodology, structure and microstructure characterization, data curation, formal analysis, writing—original draft. APD: Methodology, magnetic characterization, investigation, data curation, writing—review and editing.

Corresponding author

Correspondence to R. Fersi.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fersi, R., Dalia, A.P. Microstructure and magnetic properties of NdFe/MgO(001) thin films elaborated by evaporation from Nd3Fe29 nanocrystalline powder. Appl. Phys. A 129, 771 (2023). https://doi.org/10.1007/s00339-023-07064-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-07064-4

Keywords

Navigation