Skip to main content
Log in

Effects of Cr doping on the structural, optical and electrical characterizations of spray-deposited ZnSnO3 thin films

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In the current research, spray pyrolysis was effectively employed to create the ZnSnO3 and Cr: ZnSnO3 films at substrate temperature 320 °C. The X-ray diffraction spectra of the ZnSnO3 and Cr: ZnSnO3 thin films revealed a rhombohedral structure corresponding to the ZnSnO3 phase. The structural analysis refers to increasing the Cr content from 0 to 7.5 wt% led to a reduction in the crystallite size of the investigated layers from 36.92 to 23.87 nm. The EDX measurements verified the existence of the Zn, Sn, and O in the ZnSnO3 and Cr, Zn, Sn, and O in the Cr: ZnSnO3 thin films. The ratios of these elements match the stoichiometry of ZnSnO3. Spectrophotometric measurements of the transmission and reflection of the neoteric Cr: ZnSnO3 sheets were used for analyzing their optical characteristics. The optical transmissions of the ZnSnO3 and Cr: ZnSnO3 films were reduced from 94 to 81% by boosting the Cr content. Moreover, the studied films attained band gaps reduced from 3.71 to 3.29 eV, boosting the Cr content from 0 to 7.5 wt%. Also, the analysis of the refractive indices of the investigated films displays an improvement in these values from 2.43 to 3.75. The Urbach energy of these samples increased from 0.13 to 0.17 eV by enlarging the Cr content. The optoelectrical indices like electrical conductivity, real and imaginary sections of the dielectric indices, and optical conductivity are all boosted by boosting the Cr content. The impact of Cr content on the nonlinear optical parameters refers to an enhancement in the nonlinear optical parameter’s values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The datasets generated during the current study are available from the corresponding author on reasonable request.

References

  1. T. Ohsawa, J. Vac. Sci. Technol. A Vac. Surf. Film. 40, 10806 (2022)

    ADS  Google Scholar 

  2. M. Kim, B.-H. Kwon, C.W. Joo, M.S. Cho, H. Jang, H. Cho, D.Y. Jeon, E.N. Cho, Y.S. Jung, Nat. Commun. 13, 1 (2022)

    ADS  Google Scholar 

  3. T.T. Nguyen, G. Murali, M. Patel, S. Park, I. In, J. Kim, A.C.S. Appl, Energy Mater. 5, 7134 (2022)

    Google Scholar 

  4. Y. Abo-zeid, G.R. Williams, Wiley Interdiscip. Rev. Nanomed. NanoBiotechnol. 12, 1 (2020)

    Google Scholar 

  5. N.K. Chourasia, A. Sharma, V. Acharya, N. Pal, S. Biring, B.N. Pal, J. Alloys Compd. 777, 1124 (2019)

    Google Scholar 

  6. S.H. Lim, J.K. Kim, Y.C. Kang, Appl. Surf. Sci. 509, 144918 (2020)

    Google Scholar 

  7. I.M. El Radaf, T.A. Hameed, G.M. El komy, T.M. Dahy, Ceram. Int. 45, 3072 (2019)

    Google Scholar 

  8. C. Khelifi, A. Attaf, A. Yahia, M. Dahnoun, Surf. Interfaces 15, 244 (2019)

    Google Scholar 

  9. Y. Xu, L. Zheng, C. Yang, W. Zheng, X. Liu, J. Zhang, A.C.S. Appl, Mater. Interfaces 12, 20704 (2020)

    Google Scholar 

  10. A. Abdel-Galil, M.S.A. Hussien, I.S. Yahia, Superlattices Microstruct. 147, 106697 (2020)

  11. S.S. Soumya, T.S. Xavier, Phys. B Condens. Matter 624, 413432 (2022)

    Google Scholar 

  12. S.I. Abbas, S.F. Hathot, A.S. Abbas, A.A. Salim, Opt. Mater. (Amst.) 117, 111212 (2021)

    Google Scholar 

  13. I.M. El Radaf, R.M. Abdelhameed, J. Alloys Compd. 765, 1174 (2018)

  14. G. Shanker, P. Prathap, K.M.K. Srivatsa, P. Singh, Curr. Appl. Phys. 19, 697 (2019)

    ADS  Google Scholar 

  15. M. Benyakhlef, F. Bensouici, M. Bououdina, A.A. Dakhel, R. Tala-Ighil, M. Toubane, Surf. Interfaces 100682 (2020)

  16. A. Hosseini, H.H. Güllü, E. Coskun, M. Parlak, C. Ercelebi, Surf. Rev. Lett. 26, 1 (2019)

    Google Scholar 

  17. Y. Itzhaik, O. Niitsoo, M. Page, G. Hodes, J. Phys. Chem. C 113, 4254 (2009)

    Google Scholar 

  18. K.D. Arun, K.R. Thomas, S.V.V Ganesh, M. Shkir, S.A.J. Thirumalai, Appl. Phys. A (2019)

  19. A. Di Mauro, M.E. Fragalà, V. Privitera, G. Impellizzeri, Mater. Sci. Semicond. Process. 69, 44 (2017)

    Google Scholar 

  20. M.A. Mahmud, N.K. Elumalai, M.B. Upama, D. Wang, K.H. Chan, M. Wright, C. Xu, F. Haque, A. Uddin, Sol. Energy Mater. Sol. Cells 159, 251 (2017)

    Google Scholar 

  21. A. Abdel-Galil, M.S.A. Hussien, I.S. Yahia, Opt. Mater. (Amst.) 114, 110894 (2021)

    Google Scholar 

  22. M. Shaban, M. Zayed, H. Hamdy, RSC Adv. 7, 617 (2017)

    ADS  Google Scholar 

  23. E. Benrezgua, B. Deghfel, Z. Abdelhalim, W.J. Basirun, R. Amari, A. Boukhari, M.K. Yaakob, S. Kheawhom, A.A. Mohamad, J. Mol. Struct. 133639 (2022)

  24. M.F. Gözükızıl, Eur. Chem. Bull. 9, 335 (2020)

    Google Scholar 

  25. H. Jeon, S. Lee, H. Kim, J. Park, Appl. Surf. Sci. 301, 358 (2014)

    ADS  Google Scholar 

  26. B.A. Gozeh, A. Karabulut, A. Yildiz, F. Yakuphanoglu, J. Alloys Compd. 732, 16 (2018)

    Google Scholar 

  27. M. Wang, J. Yi, S. Yang, Z. Cao, X. Huang, Y. Li, H. Li, J. Zhong, Appl. Surf. Sci. 382, 217 (2016)

    ADS  Google Scholar 

  28. T.G. Kim, D.S. Shin, J. Park, J. Nanosci. Nanotechnol. 16, 10272 (2016)

    Google Scholar 

  29. I.M. El Radaf, J. Mater. Sci. Mater. Electron. 34, 215 (2023)

    Google Scholar 

  30. Y. Wang, C. Yang, Y. Zhang, L. Guo, Y. Wang, G. Gao, F. Fu, B. Xu, D. Wang, Int. J. Hydrog. Energy 47, 9566 (2022)

    Google Scholar 

  31. C.B. Anucha, I.I. Altin, E. Bacaksiz, V.N. Stathopoulos, I. Polat, A. Yasar, Ö.F. Yüksel, Water 13, 1290 (2021)

    Google Scholar 

  32. H. Zhu, J. Liu, R. Chen, B. Feng, C. Luan, J. Ma, H. Xiao, Vacuum 197, 110811 (2022)

    ADS  Google Scholar 

  33. J. Xu, X. Jia, X. Lou, J. Shen, Solid State Electron. 50, 504 (2006)

    ADS  Google Scholar 

  34. L.A. Patil, I.G. Pathan, D.N. Suryawanshi, A.R. Bari, D.S. Rane, Procedia Mater. Sci. 6, 1557 (2014)

    Google Scholar 

  35. I. Riahi, B. Khalfallah, F. Chaabouni, Opt. Quantum Electron. 54, 1 (2022)

    Google Scholar 

  36. R. Kumaravel, K. Ramamurthi, I. Sulania, K. Asokan, D. Kanjilal, D.K. Avasti, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 285, 61 (2012)

    ADS  Google Scholar 

  37. W. Zeng, T. Liu, L. Lin, Mater. Sci. Semicond. Process. 15, 319 (2012)

    Google Scholar 

  38. Z. Sima, P. Song, Q. Wang, Appl. Surf. Sci. 614, 156215 (2023)

    Google Scholar 

  39. Z. Sima, P. Song, Y. Ding, Z. Lu, Q. Wang, Appl. Surf. Sci. 598, 153861 (2022)

    Google Scholar 

  40. A.S. Hassanien, I.M. El Radaf, Phys. B Condens. Matter 585, 412110 (2020)

    Google Scholar 

  41. A.A. Akl, A.S. Hassanien, Phys. B Condens. Matter 620, 413267 (2021)

    Google Scholar 

  42. A.A. Akl, I.M. El Radaf, A.S. Hassanien, Superlattices Microstruct. 106544 (2020)

  43. A.A. Akl, I.M. El Radaf, A.S. Hassanien, Optik (Stuttg.) 227, 165837 (2021)

    ADS  Google Scholar 

  44. A. Sa’aedi, A. A. Akl, and A. S. Hassanien, CrystEngComm, 24, 4661 (2022).

    Google Scholar 

  45. A.S. Hassanien, I. Sharma, A.A. Akl, J. Non Cryst. Solids 531, 119853 (2020)

    Google Scholar 

  46. J. Tauc, R. Grigorovici, A. Vancu, Phys. Status Solidi 15, 627 (1966)

    Google Scholar 

  47. A.S. Hassanien, I. Sharma, J. Alloys Compd. 798, 750 (2019)

    Google Scholar 

  48. A. S. Hassanien, A. A. Akl, and I. M. El Redaf, Emergent Mater, 6, 943, (2023).

  49. G. Gnanamoorthy, K. Ramar, A. Padmanaban, V.K. Yadav, K.S. Babu, V. Karthikeyan, V. Narayanan, Adv. Powder Technol. 31, 1209 (2020)

    Google Scholar 

  50. X. Yang, S. Jiang, J. Li, J.-H. Zhang, X.-F. Li, RSC Adv. 8, 20990 (2018)

    ADS  Google Scholar 

  51. A.S. Hassanien, K.A. Aly, A.A. Akl, J. Alloys Compd. 685, 733 (2016)

    Google Scholar 

  52. A.S. Hassanien, I. Sharma, Optik (Stuttg.) 200, 163415 (2020)

    ADS  Google Scholar 

  53. A.S. Hassanien, R. Neffati, K.A. Aly, Optik (Stuttg.) 212, 164681 (2020)

  54. I.M. El Radaf, J. Mater. Sci. Mater. Electron. 31, 3228 (2020)

    Google Scholar 

  55. A. Alsulami, H.Y.S. Al-Zahrani, Phys. B Condens. Matter 657, 414786 (2023)

    Google Scholar 

  56. I.M.H.Y.S. El RadafAl-Zahrani, A.S. Hassanien, J. Mater. Sci. Mater. Electron. 31, 8336 (2020)

    Google Scholar 

  57. S.H. Wemple, Phys. Rev. B 7, 3767 (1973)

    ADS  Google Scholar 

  58. K.A. Aly, Appl. Phys. A 99, 913 (2010)

    ADS  Google Scholar 

  59. I. Sharma, P. Sharma, A.S. Hassanien, J. Non Cryst. Solids 590, 121673 (2022)

    Google Scholar 

  60. S.H. Wemple, M. DiDomenico, Phys. Rev. B 3, 1338 (1971)

    ADS  Google Scholar 

  61. A.S. Hassanien, J. Alloys Compd. 671, 566 (2016)

    Google Scholar 

  62. I.M. El Radaf, A.S. Hassanien, Phys. B Condens. Matter 414867 (2023)

  63. A.S. Hassanien, I.M. El Radaf, Mater. Sci. Semicond. Process. 160, 107405 (2023)

    Google Scholar 

  64. A.S. Hassanien, K.A. Aly, H.I. Elsaeedy, A. Alqahtani, Appl. Phys. A 128, 1021 (2022)

    ADS  Google Scholar 

  65. M. Shkir, Z.R. Khan, A. Khan, K.V. Chandekar, M.A. Sayed, S. AlFaify, Ceram. Int. 48, 14550 (2022)

    Google Scholar 

  66. I.M. El Radaf, Appl. Phys. A Mater. Sci. Process. 126, 357 (2020)

  67. A.S. Hassanien, J. Non Cryst. Solids 586, 121563 (2022)

    Google Scholar 

  68. A.S. Hassanien, I. Sharma, K.A. Aly, Phys. B Condens. Matter 613, 412985 (2021)

    Google Scholar 

  69. A. Alsulami, H.Y.S. Al-Zahrani, J. Mater. Sci. Mater. Electron. 34, 1142 (2023)

    Google Scholar 

  70. H.Y.S. Al-Zahrani, A. Alsulami, J. Mater. Sci. Mater. Electron. 34, 865 (2023)

    Google Scholar 

Download references

Funding

This research was not funded by any authority, entity or individual other than the authors themselves. They bear all the costs of the work.

Author information

Authors and Affiliations

Authors

Contributions

HYSA-Z: conceptualization, methodology, formal analysis, resources, writing, data curation, original draft, review and editing; AA: conceptualization, methodology, formal analysis, resources, writing, data curation, original draft, review and editing.

Corresponding author

Correspondence to H. Y. S. Al-Zahrani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

I’m the corresponding author, and I declare that: The manuscript should not be submitted to multiple journals for simultaneous consideration. The authors agree to publish the manuscript in the journal of optical and quantum electronics.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Zahrani, H.Y.S., Alsulami, A. Effects of Cr doping on the structural, optical and electrical characterizations of spray-deposited ZnSnO3 thin films. Appl. Phys. A 129, 783 (2023). https://doi.org/10.1007/s00339-023-07063-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-07063-5

Keywords

Navigation