Skip to main content
Log in

Development and evaluation of ZnO and ZnO/MWCNT composite as CO2 gas sensors

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Sensing devices have currently become essential to monitor CO2 concentrations in human exhalation and the environment. These devices play a crucial role in identifying acceptable limits and ventilation rates in the workplace, thus optimizing the return to classrooms, laboratories, and offices during the global coronavirus pandemic (SARS-CoV-2). The purpose of this study is to obtain a composite material by combining zinc oxide (ZnO) and multi-walled carbon nanotubes (MWCNTs) and investigate its structural and sensing properties. Pure ZnO nanostructures were synthesized by homogeneous precipitation assisted by ultrasound irradiation, while MWCNTs were prepared by spray pyrolysis at 700 °C. Subsequently, the ZnO/MWCNT composite was synthesized by wet chemical method and tested for CO2 detection at different concentrations from 5 to 500 ppm. The hexagonal wurtzite phase of ZnO and ZnO/MWCNT composite was evaluated by X-ray diffraction (XRD) measurements at room temperature. Additionally, a scanning electron microscopy (SEM) analysis showed a rod-like morphology in the ZnO structures and agglomerated prisms in the ZnO/MWCNT composite. Finally, the CO2 detection properties analyzed in this study were sensing response, response time, recovery time, repeatability, and stability in both samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed throughout the current study are available from the corresponding author upon reasonable request.

References

  1. M. Samadi, M. Zirak, A. Naseri, E. Khorashadizade, A.Z. Moshfegh, Thin Solid Films 605, 2 (2016)

    ADS  Google Scholar 

  2. H. Morkoç, Ü. Özgür, Zinc oxide: fundamentals, materials and device technology (Wiley, 2009)

  3. T.A. Taha, R. Saad, M. Zayed, M. Shaban, A.M. Ahmed, Appl. Phys. A Mater. Sci. Process. 129, 1 (2023)

    Google Scholar 

  4. J. M. Green, L. Dong, T. Gutu, J. Jiao, J. F. Conley, and Y. Ono, J. Appl. Phys. 99, 094308 (2006).

  5. C.-Y. Wang, S. Adhikari, Phys. Lett. A 375, 2171 (2011)

    ADS  Google Scholar 

  6. M. Amir, M. Abbas, M. Fatima, Z.S. Khan, N.A. Shah, Appl. Phys. A Mater. Sci. Process. 127, 1 (2021)

    Google Scholar 

  7. A. Benyounes, N. Abbas, M. Hammi, Y. Ziat, A. Slassi, N. Zahra, Appl. Phys. A Mater. Sci. Process. 124, 1 (2018)

    Google Scholar 

  8. B.F. Bessac, S.E. Jordt, Proc. Am. Thorac. Soc. 7, 269 (2010)

    Google Scholar 

  9. A. Mohmmed, Z. Li, A. Olushola Arowolo, H. Su, X. Deng, O. Najmuddin, Y. Zhang, Resour. Conserv. Recycl. 148, 157 (2019).

  10. D. Eamus, P.G. Jarvis, Adv. Ecol. Res. 34, 1 (2004)

    Google Scholar 

  11. J.F. Li, O.W.H. Wai, Y.S. Li, J.M. Zhan, Y.A. Ho, J. Li, E. Lam, Build. Environ. 45, 2644 (2010)

    Google Scholar 

  12. C.C. Mardare, A.W. Hassel, Phys. Status Solidi 216, 1 (2019)

    Google Scholar 

  13. V.S. Bhati, M. Hojamberdiev, M. Kumar, Energy Rep. 6, 46 (2020)

    Google Scholar 

  14. R. Zhou, G. Hu, R. Yu, C. Pan, Z.L. Wang, Nano Energy 12, 588 (2015)

    Google Scholar 

  15. M.V. Lorevice, P.I.C. Claro, N.A. Aleixo, L.S. Martins, M.T. Maia, A.P.S. Oliveira, D.S.T. Martinez, R.F. Gouveia, Chem. Eng. J. 462, 142166 (2023)

    Google Scholar 

  16. J. Qian, X. Mi, Z. Chen, W. Xu, W. Liu, R. Ma, Y. Zhang, Y. Du, B.J. Ni, J. Clean. Prod. 405, 137023 (2023)

    Google Scholar 

  17. S. Siccardi, J. Amici, S. Colombi, J. T. Carvalho, D. Versaci, E. Quartarone, L. Pereira, F. Bella, C. Francia, and S. Bodoardo, Electrochim. Acta 433, 141265 (2022).

  18. F. Elizalde, J. Amici, S. Trano, G. Vozzolo, R. Aguirresarobe, D. Versaci, S. Bodoardo, D. Mecerreyes, H. Sardon, F. Bella, J. Mater. Chem. A 10, 12588 (2022)

    Google Scholar 

  19. S. Trano, F. Corsini, G. Pascuzzi, E. Giove, L. Fagiolari, J. Amici, C. Francia, S. Turri, S. Bodoardo, G. Griffini, F. Bella, Chemsuschem 15, 1 (2022)

    Google Scholar 

  20. M. Gandolfo, J. Amici, L. Fagiolari, C. Francia, S. Bodoardo, F. Bella, Sustain. Mater. Technol. 34, e00504 (2022)

    Google Scholar 

  21. M. Elias, M.K. Amin, S.H. Firoz, M.A. Hossain, S. Akter, M.A. Hossain, M.N. Uddin, I.A. Siddiquey, Ceram. Int. 43, 84 (2017)

    Google Scholar 

  22. J. Khanderi, R.C. Hoffmann, A. Gurlo, J.J. Schneider, J. Mater. Chem. 19, 5039 (2009)

    Google Scholar 

  23. G. Neri, S.G. Leonardi, N. Donato, C. Marichy, J.P. Tessonnier, M.G. Willinger, K.H. Lee, N. Pinna, Procedia Eng. 47, 1259 (2012)

    Google Scholar 

  24. S.S. Wagh, D.B. Salunkhe, S.P. Patole, S. Jadkar, R.S. Patil, ES Energy Environ. 21(945), 1 (2023)

    Google Scholar 

  25. T. Li, W. Yin, S. Gao, Y. Sun, P. Xu, S. Wu, H. Kong, G. Yang, G. Wei, Nanomaterials 12, 982 (2022)

    Google Scholar 

  26. L.Y. Gai, R.P. Lai, X.H. Dong, X. Wu, Q.T. Luan, J. Wang, H.F. Lin, W.H. Ding, G.L. Wu, W.F. Xie, Rare Met. 41, 1818 (2022)

    Google Scholar 

  27. V. Pavitra, I. Soni, B.M. Praveen, G. Nagaraju, J. Electrochem. Sci. Eng. 13, 605 (2013)

    Google Scholar 

  28. N.C. Joshi, P. Gururani, S.P. Gairola, Biointerface Res. Appl. Chem. 12, 6557 (2022)

    Google Scholar 

  29. S. Park, W. Shou, L. Makatura, W. Matusik, K. (Kelvin) Fu, Matter 5, 43 (2022).

  30. S. Kour, S. Tanwar, A.L. Sharma, Mater. Today Commun. 32, 104033 (2022)

    Google Scholar 

  31. Kiranakumar. H. V, Thejas R, Naveen C S, M. I. Khan, Prasanna G D, S. Reddy, M. Oreijah, K. Guedri, O. T. Bafakeeh, and M. Jameel, Biomass Convers. Biorefinery (2022).

  32. A. Abdulhameed, M. Mahadi, H. Wan, M. Wan, A. Kamil, and K. Ooi, Appl. Phys. A 129, 532 (2023).

  33. N. Arsalani, S. Bazazi, M. Abuali, S. Jodeyri, J. Photochem. Photobiol. A Chem. 389, 112207 (2020)

    Google Scholar 

  34. D. Y. U. Bin Humayoun, F. Mehmood, Y. Hassan, A. Rasheed, G. Dastgeer, A. Anwar, N. Sarwa, Molecules 28, 6461 (2023)

  35. M. F. A. Alias and A. S. Abd—Alsada, J. Phys. Conf. Ser. 2114, 012020 (2021).

  36. X. Shan, Y. Pan, F. Dai, X. Chen, W. Wang, Z. Chen, Microchem. J. 155, 104708 (2020)

    Google Scholar 

  37. C. Zhang, G. Wang, M. Liu, Y. Feng, Z. Zhang, B. Fang, Electrochim. Acta 55, 2835 (2010)

    Google Scholar 

  38. J.J. Vilatela, M.E. Rabanal, F. Cervantes-Sodi, M. García-Ruiz, J.A. Jiménez-Rodríguez, G. Reiband, M. Terrones, J. Nanosci. Nanotechnol. 15, 2858 (2015)

    Google Scholar 

  39. M.M. Lu, W.Q. Cao, H.L. Shi, X.Y. Fang, J. Yang, Z.L. Hou, H.B. Jin, W.Z. Wang, J. Yuan, M.S. Cao, J. Mater. Chem. A 2, 10540 (2014)

    Google Scholar 

  40. J. Yu, J. Fan, B. Cheng, J. Power. Sour. 196, 7891 (2011)

    ADS  Google Scholar 

  41. J. Yu, B. Yang, B. Cheng, Nanoscale 4, 2670 (2012)

    ADS  Google Scholar 

  42. S. Mustapha, M. M. Ndamitso, A. S. Abdulkareem, J. O. Tijani, D. T. Shuaib, A. K. Mohammed, A. Sumaila, Adv. Nat. Sci. Nanosci. Nanotechnol. 10, 045013 (2019).

  43. V. Mote, Y. Purushotham, B. Dole, J. Theor. Appl. Phys. 6, 2 (2012)

    Google Scholar 

  44. G.K. Williamson, R.E. Smallman, Philos. Mag. 1, 34 (1956)

    ADS  Google Scholar 

  45. R. L. Rosas, Rietveld refinements for ZnO powders (Fullprof Suite), Mendeley Data, V1, (2023). https://doi.org/10.17632/sb7smvjjbf.1

  46. N. L. W. Septiani, B. Yuliarto, Nugraha, H. K. Dipojono, Appl. Phys. A 123, 166 (2017).

  47. S. Miljanić, L. Frkanec, T. Biljan, Z. Meić, M. Žinić, Langmuir 22, 9079 (2006)

    Google Scholar 

  48. L. Bokobza, J. Zhang, Express Polym Lett 6, 601 (2012)

    Google Scholar 

  49. N. Tripathi, K. Vijayarangamuthu, S. Rath, Mater. Chem. Phys. 126, 568 (2011)

    Google Scholar 

  50. M. Šćepanović, M. Grujić-Brojčin, K. Vojisavljević, S. Bernikc, T. Srećković, J. Raman Spectrosc. 41, 914 (2010)

    ADS  Google Scholar 

  51. C.S. Chen, X.H. Chen, B. Yi, T.G. Liu, W.H. Li, L.S. Xu, Z. Yang, H. Zhang, Y.G. Wang, Acta Mater. 54, 5401 (2006)

    ADS  Google Scholar 

  52. H. Tian, H. Fan, J. Ma, Z. Liu, L. Ma, S. Lei, J. Fang, C. Long, J. Hazard. Mater. 341, 102 (2018)

    Google Scholar 

  53. M. Gaidi, Appl. Phys. A Mater. Sci. Process. 124, 1 (2018)

    Google Scholar 

  54. Y. Doubi, B. Hartiti, M. Siadat, H.J.T. Nkuissi, H. Labrim, S. Fadili, M. Tahri, P. Thevenin, E. Losson, Appl. Phys. A Mater. Sci. Process. 128, 1 (2022)

    Google Scholar 

  55. O. Lupan, F. Schütt, V. Postica, D. Smazna, Y.K. Mishra, R. Adelung, Sci. Rep. 7, 1 (2017)

    Google Scholar 

  56. N.M. Hung, N.D. Chinh, T.D. Nguyen, E.T. Kim, G.S. Choi, C. Kim, D. Kim, Ceram. Int. 46, 29233 (2020)

    Google Scholar 

Download references

Acknowledgements

MJR-A. thanks Vicerrectoría de Investigación y Estudios de Posgrado for the financial support through Project 100524279-VIEP2022. The authors are thankful to Maria Eugenia Rabanal Jiménez of the Powder Technology Group at Universidad Carlos III (UC3M) and Universidad Complutense de Madrid for her support and assistance in carrying out the experimental section to obtain the multi-walled carbon nanotubes and the measurements of SEM and TEM images. Additional thanks to Elettra Sincrotrone Trieste for the measurements in the beamline XRD1 under the support of Dr. Maurizio Polentarutti. RL-R. wishes to thank CONACyT for Grant Agreement No. 920025.

Funding

This study was financially supported by Consejo Nacional de Ciencia y Tecnología (CONACyT) [Grant Agreement No. 920025] and Vicerrectoría de Investigación y Estudios de Posgrado (VIEP) [Project 100524279-VIEP2022].

Author information

Authors and Affiliations

Authors

Contributions

MJR-A contributed to the study conception, conceptualization and design; RL-R, , MJR-A, VKK-T contributed to methodology; L-RR, , MJR-A, VKK-T, JMB-A contributed to formal analysis and investigation; RL-R, , MJR-A, VKK-T, contributed to writing—original draft preparation; MJR-A, JMB-A contributed to writing—review and editing; MJR-A contributed to funding acquisition. All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to María Josefina Robles-Águila.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 727 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lozano-Rosas, R., Bravo-Arredondo, J.M., Karthik-Tangirala, V.K. et al. Development and evaluation of ZnO and ZnO/MWCNT composite as CO2 gas sensors. Appl. Phys. A 129, 788 (2023). https://doi.org/10.1007/s00339-023-07061-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-07061-7

Keywords

Navigation