Skip to main content
Log in

Generation of highly azimuthal symmetric conical beam using the planar uniform circular array antenna for vehicular communication

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This paper presents a novel approach to generating conical-shaped radiation patterns by utilizing the orbital angular momentum property of electromagnetic waves. Unlike the existing conical beam antennas, the proposed uniform circular array (UCA) uses circular polarization (CP) patches as array elements for generating a conical radiation pattern with high azimuthal symmetry. The UCA is designed at 5.9 GHz with eight-CP antenna elements rotated and positioned at \(45^{\circ }\) in a clockwise direction with a uniform feed network. As proof of concept, the designed UCA structure is fabricated on an FR4 substrate of 140 mm \(\times\) 150 mm in size and tested experimentally. The measurements confirm that the designed UCA possesses conical radiation pattern with high azimuthal symmetry at 5.9 GHz. Due to high azimuthal symmetry in the generated conical-shaped radiation pattern, the proposed UCA antenna could be advantageous for numerous wireless and vehicular communication applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability statement

Data will be made available on request.

References

  1. H. Wong, K.K. So, X. Gao, Bandwidth enhancement of a monopolar patch antenna with V-shaped slot for car-to-car and WLAN communications. IEEE Trans. Veh. Technol. 65(3), 1130–1136 (2016). https://doi.org/10.1109/TVT.2015.2409886

    Article  ADS  Google Scholar 

  2. D.A. Pham, M. Lee, S. Lim, High-gain conical-beam planar antenna for millimeter-wave drone applications. IEEE Trans. Antennas Propag. 69(10), 6959–6964 (2021). https://doi.org/10.1109/TAP.2021.3070662

    Article  ADS  Google Scholar 

  3. B. Feng, J. Chen, S. Yin, C.-Y.-D. Sim, Z. Zhao, A tri-polarized antenna with diverse radiation characteristics for 5G and V2X communications. IEEE Trans. Veh. Technol. 69(9), 10115–10126 (2020). https://doi.org/10.1109/TVT.2020.3005959

    Article  Google Scholar 

  4. S. Wang, L. Zhu, G. Zhang, J. Yang, J. Wang, W. Wu, Dual-band dual-CP all-metal antenna with large signal coverage and high isolation over two bands for vehicular communications. IEEE Trans. Veh. Technol. 69(1), 1131–1135 (2020). https://doi.org/10.1109/TVT.2019.2952880

    Article  Google Scholar 

  5. S.V. Kumar, A.R. Harish, Generation of circularly polarized conical beam pattern using torus knot antenna. IEEE Trans. Antennas Propag. 65(11), 5740–5746 (2017). https://doi.org/10.1109/TAP.2017.2754403

    Article  ADS  MathSciNet  Google Scholar 

  6. Y. Ma, J. Wang, Z. Li, Y. Li, M. Chen, Z. Zhang, Planar annular leaky-wave antenna array with conical beam. IEEE Trans. Antennas Propag. 68(7), 5405–5414 (2020). https://doi.org/10.1109/TAP.2020.2981746

    Article  ADS  Google Scholar 

  7. L. Allen, M.W. Beijersbergen, R.J.C. Spreeuw, J.P. Woerdman, Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes. Phys. Rev. A 45, 8185–8189 (1992). https://doi.org/10.1103/PhysRevA.45.8185

    Article  ADS  Google Scholar 

  8. M. Veysi, C. Guclu, F. Capolino, Y. Rahmat-Samii, Revisiting orbital angular momentum beams: fundamentals, reflectarray generation, and novel antenna applications. IEEE Antennas Propag. Mag. 60(2), 68–81 (2018). https://doi.org/10.1109/MAP.2018.2796439

    Article  ADS  Google Scholar 

  9. P. Schemmel, G. Pisano, B. Maffei, Modular spiral phase plate design for orbital angular momentum generation at millimetre wavelengths. Opt. Express 22(12), 14712–14726 (2014). https://doi.org/10.1364/OE.22.014712

    Article  ADS  Google Scholar 

  10. Z. Zhang, S. Xiao, Y. Li, B.-Z. Wang, A circularly polarized multimode patch antenna for the generation of multiple orbital angular momentum modes. IEEE Antennas Wirel. Propag. Lett. 16, 521–524 (2017). https://doi.org/10.1109/LAWP.2016.2586975

    Article  ADS  Google Scholar 

  11. M.V. Rao, J. Malik, S. Yuvaraj, M.V. Kartikeyan, Polarization insensitive reflectarray for OAM beam generation over octave bandwidth for 5G applications. AEU Int. J. Electron. Commun. 170, 154775 (2023). https://doi.org/10.1016/j.aeue.2023.154775

    Article  Google Scholar 

  12. Z.-G. Guo, G.-M. Yang, Radial uniform circular antenna array for dual-mode OAM communication. IEEE Antennas Wirel. Propag. Lett. 16, 404–407 (2017). https://doi.org/10.1109/LAWP.2016.2581204

    Article  ADS  Google Scholar 

  13. Q. Liu, Z.N. Chen, Y. Liu, F. Li, Y. Chen, Z. Mo, Circular polarization and mode reconfigurable wideband orbital angular momentum patch array antenna. IEEE Trans. Antennas Propag. 66(4), 1796–1804 (2018). https://doi.org/10.1109/TAP.2018.2803757

    Article  ADS  Google Scholar 

  14. T. Zhang, J. Hu, Q. Zhang, D. Zhu, Y. Ma, B. Lin, W. Wu, A compact multimode OAM antenna using sequentially rotated configuration. IEEE Antennas Wirel. Propag. Lett. 21(1), 134–138 (2022). https://doi.org/10.1109/LAWP.2021.3121134

    Article  ADS  Google Scholar 

  15. Y.B. Modugu, M.V. Rao, D. Mondal, S. Yuvaraj, M.V. Kartikeyan, Generation of OAM beam by a uniform circular array with triangular patches, in 2022 IEEE Wireless Antenna and Microwave Symposium (WAMS), pp. 1–3 (2022). https://doi.org/10.1109/WAMS54719.2022.9848408

Download references

Acknowledgements

This work was supported by the SEED grant of National Institute of Technology Andhra Pradesh (NITAP/SD-G/09/2020). The authors express their gratitude to SENSE, Vellore Institute of Technology Chennai for providing the Anechoic chamber facility to measure the fabricated antenna prototype.

Author information

Authors and Affiliations

Authors

Contributions

MVR: conceptualization, carrying out design, computer simulation studies and measurement analysis, data organization and drafting of the manuscript. YBM: carrying out computer simulation studies, data organization. SY: conceptualization, arrangement of funding source, drafting of the manuscript, over all supervision. MVK: reviewing the drafts and supervision of the computer simulation experiments.

Corresponding author

Correspondence to S. Yuvaraj.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, M.V., Modugu, Y.B., Yuvaraj, S. et al. Generation of highly azimuthal symmetric conical beam using the planar uniform circular array antenna for vehicular communication. Appl. Phys. A 129, 834 (2023). https://doi.org/10.1007/s00339-023-07059-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-07059-1

Keywords

Navigation