Skip to main content
Log in

Multicolor emission tuning of ZnS@SiO2-Eu3+ composite as potential application in light-emitting devices

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this report, we present luminescent properties of a composite based on zinc sulfide quantum dots (ZnS QDs) in a SiO2 matrix, doped with different concentrations of Eu3+ ions and with different thermal treatments in order to obtain white light and a tunable emitting phosphor. Various complementary techniques have extensively studied the evolution of effects of thermal treatment and Eu3+ doping on the crystallinity and emission properties. Transmission electron microscopy certifies the formation of undoped ZnS powder of particles with sizes of approximately 4.6 nm, combined with XRD, shows the amorphous nature of the matrix host as well as the presence of embedded crystalline nanoparticles. The incorporation of the Eu3+ dopant does not produce a significant effect in the crystalline structure of the ZnS@SiO2 composite. Raman spectroscopy results indicate that thermal treatment induced to formation cristobalite-low and Zn2SiO4. The photoluminescence measurements indicated that ZnS@SiO2 nanocomposite exhibit an intense and wide blue emission band centered at around 440 nm under 325 nm excitation, which is modified by the temperature, with the enhancement of the intensity, widening of the band emission, as well as maximum shifting. The calculations of the CIE 1931 chromaticity coordinates show the tuning of the tonality of the emission color from blue to cold white light, these results strengthened the possibility that the prepared samples could be applied as an efficient phosphor in the visible range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. M. Alvarez-Ramos, Study of the optical properties and cross relaxation process of Dy3+ under simultaneous UV-IR excitation in tellurite glasses. J. Lumin. 233, 117874 (2021)

    Google Scholar 

  2. A. Onal et al., High-performance white light-emitting diodes over 150 lm/W using near-unity-emitting quantum dots in a liquid matrix. ACS Photonics 9(4), 1304–1314 (2022)

    Google Scholar 

  3. J. Prakash et al., Novel rare earth metal–doped one-dimensional TiO2 nanostructures: fundamentals and multifunctional applications. Mater. Today Sustain. 13, 100066 (2021)

    Google Scholar 

  4. Q. Wang, M. Liao, Q. Lin, M. Xiong, Z. Mu, F. Wu, A review on fluorescence intensity ratio thermometer based on rare-earth and transition metal ions doped inorganic luminescent materials. J. Alloy. Compd. 850, 156744 (2021)

    Google Scholar 

  5. A. Mehtab, J. Ahmed, S.M. Alshehri, Y. Mao, T. Ahmad, Rare earth doped metal oxide nanoparticles for photocatalysis: a perspective. Nanotechnology 33(14), 142001 (2022)

    ADS  Google Scholar 

  6. R. Röder et al., Transition metal and rare earth element doped zinc oxide nanowires for optoelectronics. Phys. Status Solidi (b) 256(4), 1800604 (2019)

    ADS  Google Scholar 

  7. M. Neto et al., Optical properties of oxide glasses with semiconductor nanoparticles co-doped with rare earth ions. Chem. Phys. Lett. 588, 188–192 (2013)

    ADS  Google Scholar 

  8. G. Saavedra-Rodriguez, U. Pal, R. Sánchez-Zeferino, M. Álvarez-Ramos, Tunable white-light emission of Co2+ and Mn2+ co-doped ZnS nanoparticles by energy transfer between dopant ions. J. Phys. Chem. C 124(6), 3857–3866 (2020)

    Google Scholar 

  9. S.V. Mukhamale, A.R. Chavan, R.M. Lokhande, P.P. Khirade, Enhanced solar-cell efficiency via fabricated zinc sulfide nanocrystalline thin film-based Schottky diodes as a bypass: An experimental and theoretical investigations. Sol. Energy 211, 866–878 (2020)

    ADS  Google Scholar 

  10. J. Melendres-Sánchez et al., Zinc sulfide quantum dots coated with PVP: applications on commercial solar cells. J. Mater. Sci. Mater. Electron. 32, 1457–1465 (2021)

    Google Scholar 

  11. H. Li, X. Jiang, A. Wang, X. Chu, Z. Du, Simple synthesis of CuInS2/ZnS core/shell quantum dots for white light-emitting diodes. Front. Chem. 8, 669 (2020)

    ADS  Google Scholar 

  12. B. Poornaprakash, U. Chalapathi, Y. Suh, S.P. Vattikuti, M.S.P. Reddy, S.-H. Park, Terbium-doped ZnS quantum dots: structural, morphological, optical, photoluminescence, and photocatalytic properties. Ceram. Int. 44(10), 11724–11729 (2018)

    Google Scholar 

  13. K. Ashwini, C. Pandurangappa, K. Avinash, S. Srinivasan, E. Stefanakos, Synthesis, characterization and photoluminescence studies of samarium doped zinc sulfide nanophosphors. J. Lumin. 221, 117097 (2020)

    Google Scholar 

  14. M.J. Rivera-Medina, A. Carrillo-Verduzco, A. Rodríguez-Gómez, M.A. Loi, J.C. Alonso-Huitrón, White-emission from ZnS: Eu incorporated in AC-driven electroluminescent devices via ultrasonic spray pyrolysis. Mater. Chem. Phys. 270, 124866 (2021)

    Google Scholar 

  15. I. Gupta, D. Singh, S. Singh, P. Kumar, S. Bhagwan, V. Kumar, Study of structural and spectroscopic characteristics of novel color tunable yellowish-white Dy3+ doped Gd4Al2O9 nanophosphors for NUV-based WLEDs. J. Mol. Struct. 1272, 134199 (2023)

    Google Scholar 

  16. P. Dang, G. Zhang, W. Yang, H. Lian, G. Li, J. Lin, Red–NIR luminescence in rare-earth and manganese ions codoped Cs4CdBi2Cl12 vacancy-ordered quadruple perovskites. Chem. Mater. 35(4), 1640–1650 (2023)

    Google Scholar 

  17. K. Binnemans, Interpretation of europium (III) spectra. Coord. Chem. Rev. 295, 1–45 (2015)

    Google Scholar 

  18. G.S. Rodríguez, R.C.C. Torres, R.S. Zeferino, M.E.Á. Ramos, Stabilized blue emitting ZnS@ SiO2 quantum dots. Opt. Mater. 89, 396–401 (2019)

    ADS  Google Scholar 

  19. X. Hao et al., Hybrid mesoporous silica-based drug carrier nanostructures with improved degradability by hydroxyapatite. ACS Nano 9(10), 9614–9625 (2015)

    Google Scholar 

  20. Z.-T. Lin, Y.-B. Wu, Y.-G. Bi, Rapid synthesis of SiO 2 by ultrasonic-assisted Stober method as controlled and pH-sensitive drug delivery. J. Nanopart. Res. 20, 1–13 (2018)

    Google Scholar 

  21. A.R. Molla, A. Tarafder, B. Karmakar, Synthesis and properties of glasses in the K 2 O-SiO 2–Bi 2 O 3–TiO 2 system and bismuth titanate (Bi 4 Ti 3 O 12) nano glass–ceramics thereof. J. Mater. Sci. 46, 2967–2976 (2011)

    ADS  Google Scholar 

  22. M. Pal, U. Pal, J.M.G.Y. Jiménez, F. Pérez-Rodríguez, Effects of crystallization and dopant concentration on the emission behavior of TiO 2: Eu nanophosphors. Nanoscale Res. Lett. 7, 1–12 (2012)

    ADS  Google Scholar 

  23. V. Singh et al., Luminescence features of Mn2+-doped Zn2SiO4: A green color emitting phosphor for solid-state lighting. Optik 225, 165715 (2021)

    ADS  Google Scholar 

  24. G. Saavedra Rodriguez, R. Sanchez-Zeferino, C. Chapa, M.E. Alvarez Ramos, Silica-coated ZnS quantum dots for multicolor emission tuning from blue to white light. ACS Appl. Nano Mater. 4(11), 12180–12187 (2021)

    Google Scholar 

  25. G. Essalah et al., Structural, optical, photoluminescence properties and Ab initio calculations of new Zn2SiO4/ZnO composite for white light emitting diodes. Ceram. Int. 46(8), 12656–12664 (2020)

    Google Scholar 

  26. A. Naeimi, A.M. Arabi, V. Merajifar, A novel approach to the synthesis of Zn 2 SiO 4: Mn luminescent nanoparticles. J. Mater. Sci. Mater. Electron. 30, 9123–9132 (2019)

    Google Scholar 

  27. K. Omri, O. Lemine, L. El Mir, Mn doped zinc silicate nanophosphor with bifunctionality of green-yellow emission and magnetic properties. Ceram. Int. 43(8), 6585–6591 (2017)

    Google Scholar 

  28. B.C. Babu, V. Naresh, B.J. Prakash, S. Buddhudu, Structural, thermal and dielectric properties of lithium zinc silicate ceramic powders by sol-gel method. Ferroelectr. Lett. Sect.Sect. 38(4–6), 114–127 (2011)

    ADS  Google Scholar 

  29. S.E. Elhadi, C. Liu, Z. Zhao, K. Li, X. Zhao, Structure and optical properties of ZnO/Zn2SiO4 composite thin films containing Eu3+ ions. Thin Solid Films 668, 1–8 (2018)

    ADS  Google Scholar 

  30. B.C. Babu, B.V. Rao, M. Ravi, S. Babu, Structural, microstructural, optical, and dielectric properties of Mn2+: Willemite Zn2SiO4 nanocomposites obtained by a sol-gel method. J. Mol. Struct. 1127, 6–14 (2017)

    ADS  Google Scholar 

  31. B.C. Babu, S. Buddhudu, Emission spectra of Tb3+: Zn2SiO4 and Eu3+: Zn2SiO4 sol-gel powder phosphors. J. Spectrosc. Dyn 4(5), 1–8 (2014)

    Google Scholar 

  32. E.A.G. Engku Ali, K.A. Matori, E. Saion, S.H.A. Aziz, M.H.M. Zaid, I.M. Alibe, Effect of sintering temperatures on structural and optical properties of ZnO-Zn 2 SiO 4 composite prepared by using amorphous SiO 2 nanoparticles. J. Austral. Ceram. Soc. 55, 115–122 (2019)

    Google Scholar 

  33. E.E. Ali, K. Matori, E. Saion, S. Aziz, M. Zaid, I. Alibe, Structural and optical properties of heat treated Zn2SiO4 composite prepared by impregnation of ZnO on SiO2 amorphous nanoparticles. ASM Sci. J 11, 75–85 (2018)

    Google Scholar 

  34. M.G. Naseri, E.B. Saion, H.A. Ahangar, M. Hashim, A.H. Shaari, Simple preparation and characterization of nickel ferrite nanocrystals by a thermal treatment method. Powder Technol. 212(1), 80–88 (2011)

    Google Scholar 

  35. I.M. Alibe et al., Effects of calcination holding time on properties of wide band gap willemite semiconductor nanoparticles by the polymer thermal treatment method. Molecules 23(4), 873 (2018)

    Google Scholar 

  36. R. L. Grosse, Handbook of Raman Spectroscopy: From the Research Laboratory to the Process Line Edited by Ian R. Lewis (Kaiser Optical Systems) and Howell GM Edwards (University of Bradford). Dekker: New York, Basel. 2001. xiv+ 1054 pp. $225. ACS Publications, (2002) (ISBN 0–8247–0557–2)

  37. B. Chandra Babu, S. Buddhudu, Analysis of structural and electrical properties of Ni 2+: Zn 2 SiO 4 ceramic powders by sol–gel method. J. Sol-Gel Sci. Technol. 70, 405–415 (2014)

    Google Scholar 

  38. V. Taxak, S. Khatkar, Synthesis, structural and optical properties of Eu3+–doped Ca2V2O7 nanophosphors. Curr. Appl. Phys. 13(3), 594–598 (2013)

    ADS  Google Scholar 

  39. A. Trápala-Ramírez et al., Calcium-zinc phosphate glasses activated with Tb3+/Eu3+ for laser and white LED applications. J. Lumin. 215, 116621 (2019)

    Google Scholar 

  40. M. Pal, N. Mathews, E.R. Morales, J.G. y Jiménez, X. Mathew, Synthesis of Eu+ 3 doped ZnS nanoparticles by a wet chemical route and its characterization. Opt. Mater. 35(12), 2664–2669 (2013)

    ADS  Google Scholar 

  41. J. García, M. Mondragon, C. Téllez, A. Campero, V. Castano, Blue emission in tetraethoxysilane and silica gels. Mater. Chem. Phys. 41(1), 15–17 (1995)

    Google Scholar 

  42. N. Hien et al., Influence of Eu doping on the structural and optical properties of Zn1-xEuxSe quantum dots. J. Phys. Chem. Solids 148, 109729 (2021)

    Google Scholar 

  43. M. Alvarez-Ramos, J. Alvarado-Rivera, F. Félix-Domínguez, R. Carrillo-Torres, R. Sánchez-Zeferino, G. Saavedra-Rodríguez, Multicolor green to orange-red emission of Tb3+ and Eu3+-codoped tellurite glasses: Eu3+ concentration and Tb3+→ Eu3+ energy transfer. Appl. Phys. A 129(1), 75 (2023)

    ADS  Google Scholar 

  44. L. Archana, D.N. Rajendran, J. Cyriac, Influence of rare earth substitution on structure, photoluminescence emission properties and Judd-Ofelt analysis of ZnS: Eu3+ red phosphors. J. Lumin. 243, 118679 (2022)

    Google Scholar 

  45. Y. Wang, X. Liang, E. Liu, X. Hu, J. Fan, Incorporation of lanthanide (Eu3+) ions in ZnS semiconductor quantum dots with a trapped-dopant model and their photoluminescence spectroscopy study. Nanotechnology 26(37), 375601 (2015)

    ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank CONAHCYT for the financial and infrastructure support through the Grant Infra-226208-2014, Grant Infra-255791-2015 and Cátedra-CONAHCYT (Project No. 529).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by AC-R, AZ-R, RL-D and MEA-R. The first draft of the manuscript was written by AC-R. Manuscript reviewing and editing: RL-D, RS-Z and MEA-R. Funding acquisition and supervision: MEA-R. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Rosendo Lopez-Delgado.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Córdova-Rubio, A., Zazueta-Raynaud, A., Lopez-Delgado, R. et al. Multicolor emission tuning of ZnS@SiO2-Eu3+ composite as potential application in light-emitting devices. Appl. Phys. A 129, 785 (2023). https://doi.org/10.1007/s00339-023-07054-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-07054-6

Keywords

Navigation